Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 420, Pages 103–126 (Mi znsl5729)  

This article is cited in 2 scientific papers (total in 2 papers)

Detection of a sparse-variable function

Yu. I. Ingster, I. A. Suslinaa

a St. Petersburg National Research University of Information Technologies, Mechanics and Optics, St. Petersburg, Russia
Full-text PDF (322 kB) Citations (2)
References:
Abstract: We observe an unknown $d$-variable function $f=f(t)$, $t=(t_1,\dots,t_d)\in[0,\,1]^d,$ $f\in L_2([0,\,1]^d)$ in Gaussian white noise of level $\varepsilon>0$. We test the null hypothesis $H_0\colon f=0$ against the alternative $H_1$. Under the alternative, we suppose that unknown function is bounded away from zero:
$$ \|f\|\ge r_\varepsilon,$$
for some positive family $\underset{\varepsilon\to0}{r_\varepsilon\to0}$. Moreover, we assume that unknown $d$-variable $f$ is a function of a smaller number of variables $s$ (“sparse variable” function), and this function satisfies some regularity constraints. We also consider the problem of adaptation in $k=1,\dots,s$. We assume that $d=d_\varepsilon\to\infty$. The integer $s\in\mathbb N$ could be fixed or $s=s_\varepsilon\to\infty$, $s=o(d)$. We study the minimax error probabilities and obtain the minimax separation rates that provide distinguishability in the problems. Then, we apply the results obtained for the case of the alternatives from the Sobolev balls with the remote $L_2$-ball.
Key words and phrases: detection of sparse signal, minimax testing, minimax adaptive testing, sharp detection bounds.
Received: 22.10.2013
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 206, Issue 2, Pages 181–196
DOI: https://doi.org/10.1007/s10958-015-2302-z
Bibliographic databases:
Document Type: Article
UDC: 519.234.3
Language: Russian
Citation: Yu. I. Ingster, I. A. Suslina, “Detection of a sparse-variable function”, Probability and statistics. Part 20, Zap. Nauchn. Sem. POMI, 420, POMI, St. Petersburg, 2013, 103–126; J. Math. Sci. (N. Y.), 206:2 (2015), 181–196
Citation in format AMSBIB
\Bibitem{IngSus13}
\by Yu.~I.~Ingster, I.~A.~Suslina
\paper Detection of a~sparse-variable function
\inbook Probability and statistics. Part~20
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 420
\pages 103--126
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5729}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 206
\issue 2
\pages 181--196
\crossref{https://doi.org/10.1007/s10958-015-2302-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953347347}
Linking options:
  • https://www.mathnet.ru/eng/znsl5729
  • https://www.mathnet.ru/eng/znsl/v420/p103
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:188
    Full-text PDF :70
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024