Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 420, Pages 88–102 (Mi znsl5728)  

This article is cited in 16 scientific papers (total in 16 papers)

A limit theorem on convergence of random walk functionals to a solution of the Cauchy problem for the equation $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with complex $\sigma$

I. A. Ibragimovab, N. V. Smorodinac, M. M. Faddeevc

a St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia
b St. Petersburg State University, Department of Mathematics and Mechanics, St. Petersburg, Russia
c St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: The paper is devoted to some problems associated with a probabilistic representation and a probabilistic approximation of the Cauchy problem solution for the family of equations $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with a complex parameter $\sigma$ such that $\mathrm{Re}\,\sigma^2\geqslant0$. The above family includes as a particular case both the heat equation (when $\mathrm{Im}\,\sigma=0$) and the Schrödinger equation (when $\mathrm{Re}\,\sigma^2=0$).
Key words and phrases: limit theorem, Schrödinger equation, Feynman measure, random walk, evolution equation.
Received: 30.09.2013
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 206, Issue 2, Pages 171–180
DOI: https://doi.org/10.1007/s10958-015-2301-0
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: I. A. Ibragimov, N. V. Smorodina, M. M. Faddeev, “A limit theorem on convergence of random walk functionals to a solution of the Cauchy problem for the equation $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with complex $\sigma$”, Probability and statistics. Part 20, Zap. Nauchn. Sem. POMI, 420, POMI, St. Petersburg, 2013, 88–102; J. Math. Sci. (N. Y.), 206:2 (2015), 171–180
Citation in format AMSBIB
\Bibitem{IbrSmoFad13}
\by I.~A.~Ibragimov, N.~V.~Smorodina, M.~M.~Faddeev
\paper A limit theorem on convergence of random walk functionals to a~solution of the Cauchy problem for the equation $\frac{\partial u}{\partial t}=\frac{\sigma^2}2\,\Delta u$ with complex~$\sigma$
\inbook Probability and statistics. Part~20
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 420
\pages 88--102
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5728}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 206
\issue 2
\pages 171--180
\crossref{https://doi.org/10.1007/s10958-015-2301-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84930700091}
Linking options:
  • https://www.mathnet.ru/eng/znsl5728
  • https://www.mathnet.ru/eng/znsl/v420/p88
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:498
    Full-text PDF :176
    References:84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024