|
Zapiski Nauchnykh Seminarov POMI, 2013, Volume 420, Pages 50–69
(Mi znsl5726)
|
|
|
|
This article is cited in 13 scientific papers (total in 13 papers)
Estimates for the concentration functions in the Littlewood–Offord problem
Yu. S. Eliseevaa, F. Götzeb, A. Yu. Zaitsevac a St. Petersburg State University, St. Petersburg, Russia
b Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
c St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
Let $X,X_1,\ldots,X_n$ be independent identically distributed random variables. In this paper we study the behavior of the concentration functions of the weighted sums $\sum_{k=1}^na_kX_k$ with respect to the arithmetic structure of coefficients $a_k$. Such concentration results recently became important in connection with investigations about singular values of random matrices. In this paper we formulate and prove some refinements of a result of Vershynin (2011).
Key words and phrases:
concentration functions, inequalities, the Littlewood–Offord problem, sums of independent random variables.
Received: 29.10.2013
Citation:
Yu. S. Eliseeva, F. Götze, A. Yu. Zaitsev, “Estimates for the concentration functions in the Littlewood–Offord problem”, Probability and statistics. Part 20, Zap. Nauchn. Sem. POMI, 420, POMI, St. Petersburg, 2013, 50–69; J. Math. Sci. (N. Y.), 206:2 (2015), 146–158
Linking options:
https://www.mathnet.ru/eng/znsl5726 https://www.mathnet.ru/eng/znsl/v420/p50
|
Statistics & downloads: |
Abstract page: | 220 | Full-text PDF : | 73 | References: | 52 |
|