Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 420, Pages 50–69 (Mi znsl5726)  

This article is cited in 13 scientific papers (total in 13 papers)

Estimates for the concentration functions in the Littlewood–Offord problem

Yu. S. Eliseevaa, F. Götzeb, A. Yu. Zaitsevac

a St. Petersburg State University, St. Petersburg, Russia
b Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
c St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: Let $X,X_1,\ldots,X_n$ be independent identically distributed random variables. In this paper we study the behavior of the concentration functions of the weighted sums $\sum_{k=1}^na_kX_k$ with respect to the arithmetic structure of coefficients $a_k$. Such concentration results recently became important in connection with investigations about singular values of random matrices. In this paper we formulate and prove some refinements of a result of Vershynin (2011).
Key words and phrases: concentration functions, inequalities, the Littlewood–Offord problem, sums of independent random variables.
Received: 29.10.2013
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 206, Issue 2, Pages 146–158
DOI: https://doi.org/10.1007/s10958-015-2299-3
Bibliographic databases:
Document Type: Article
UDC: 519
Language: Russian
Citation: Yu. S. Eliseeva, F. Götze, A. Yu. Zaitsev, “Estimates for the concentration functions in the Littlewood–Offord problem”, Probability and statistics. Part 20, Zap. Nauchn. Sem. POMI, 420, POMI, St. Petersburg, 2013, 50–69; J. Math. Sci. (N. Y.), 206:2 (2015), 146–158
Citation in format AMSBIB
\Bibitem{EliGotZai13}
\by Yu.~S.~Eliseeva, F.~G\"otze, A.~Yu.~Zaitsev
\paper Estimates for the concentration functions in the Littlewood--Offord problem
\inbook Probability and statistics. Part~20
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 420
\pages 50--69
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5726}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 206
\issue 2
\pages 146--158
\crossref{https://doi.org/10.1007/s10958-015-2299-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953351752}
Linking options:
  • https://www.mathnet.ru/eng/znsl5726
  • https://www.mathnet.ru/eng/znsl/v420/p50
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:220
    Full-text PDF :73
    References:52
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024