|
Zapiski Nauchnykh Seminarov POMI, 2013, Volume 418, Pages 198–220
(Mi znsl5723)
|
|
|
|
This article is cited in 4 scientific papers (total in 4 papers)
Lattice points in the circle and the sphere
O. M. Fomenko St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg, Russia
Abstract:
Let $P(x)$ and $P_3(x)$ be the error terms in the Gaussian circle problem and the sphere problem, respectively.
We investigate the asymptotic behavior of the sums
$$
\sum_{\substack{k\le x\\k\equiv0\!\!\!\pmod p}}P(k),\quad\sum_{\substack{k\le x\\k\equiv0\!\!\!\pmod p}}P_3(k).
$$
Here $p\ge2$ is a prime number.
Key words and phrases:
Gaussian circle problem, sphere problem, asymptotic behavior.
Received: 22.09.2013
Citation:
O. M. Fomenko, “Lattice points in the circle and the sphere”, Analytical theory of numbers and theory of functions. Part 28, Zap. Nauchn. Sem. POMI, 418, POMI, St. Petersburg, 2013, 198–220; J. Math. Sci. (N. Y.), 200:5 (2014), 632–645
Linking options:
https://www.mathnet.ru/eng/znsl5723 https://www.mathnet.ru/eng/znsl/v418/p198
|
Statistics & downloads: |
Abstract page: | 296 | Full-text PDF : | 110 | References: | 59 |
|