|
Zapiski Nauchnykh Seminarov POMI, 2013, Volume 418, Pages 184–197
(Mi znsl5722)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On the Dedekind zeta function
O. M. Fomenko St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg, Russia
Abstract:
Let $K_n$ be a number field of degree $n$ over $\mathbb Q$. Denote by $A_{K_n}(x)$ the number of ideal with norm $\leq x$. Landau's classical estimate is
$$
A_{K_n}(x)=\Lambda_nx+O(x^{(n-1)/(n+1)}).
$$
In this paper the error term is improved for the non-normal field $K_4=\mathbb Q(\root4\of m)$ and for $K_6$, the normal closure of a cubic field $K_3$ with the Galois group $S_3$.
Key words and phrases:
Dedekind zeta function, ideal distribution, Artin function.
Received: 26.08.2013
Citation:
O. M. Fomenko, “On the Dedekind zeta function”, Analytical theory of numbers and theory of functions. Part 28, Zap. Nauchn. Sem. POMI, 418, POMI, St. Petersburg, 2013, 184–197; J. Math. Sci. (N. Y.), 200:5 (2014), 624–631
Linking options:
https://www.mathnet.ru/eng/znsl5722 https://www.mathnet.ru/eng/znsl/v418/p184
|
Statistics & downloads: |
Abstract page: | 257 | Full-text PDF : | 69 | References: | 61 |
|