Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 417, Pages 106–127 (Mi znsl5707)  

This article is cited in 10 scientific papers (total in 10 papers)

Minimal biconnected graphs

D. V. Karpovab

a St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg, Russia
b St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: A biconnected graph is called minimal, if it becomes not biconnected after deleting any edge. We consider minimal biconnected graphs that have minimal number of vertices of degree 2. Denote the set of all such graphs on $n$ vertices by $\mathcal GM(n)$. It is known that a graph from $\mathcal GM(n)$ contains exactly $\lceil\frac{n+4}3\rceil$ vertices of degree 2. We prove that for $k\ge1$ the set $\mathcal GM(3k+2)$ consists of all graphs of type $G_T$, where $T$ is a tree on $k$ vertices which vertex degrees do not exceed 3. The graph $G_T$ is constructed of two copies of the tree $T$: to each pair of correspondent vertices of these two copies that have degree $j$ in $T$ we add $3-j$ new vertices of degree 2 adjacent to this pair. Graphs of the sets $\mathcal GM(3k)$ and $\mathcal GM(3k+1)$ are described with the help of graphs $G_T$.
Key words and phrases: connectivity, biconnected graph, decomposition, blocks.
Received: 05.11.2013
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 204, Issue 2, Pages 244–257
DOI: https://doi.org/10.1007/s10958-014-2199-y
Bibliographic databases:
Document Type: Article
UDC: 519.173.1
Language: Russian
Citation: D. V. Karpov, “Minimal biconnected graphs”, Combinatorics and graph theory. Part VI, Zap. Nauchn. Sem. POMI, 417, POMI, St. Petersburg, 2013, 106–127; J. Math. Sci. (N. Y.), 204:2 (2015), 244–257
Citation in format AMSBIB
\Bibitem{Kar13}
\by D.~V.~Karpov
\paper Minimal biconnected graphs
\inbook Combinatorics and graph theory. Part~VI
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 417
\pages 106--127
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5707}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 204
\issue 2
\pages 244--257
\crossref{https://doi.org/10.1007/s10958-014-2199-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84925487247}
Linking options:
  • https://www.mathnet.ru/eng/znsl5707
  • https://www.mathnet.ru/eng/znsl/v417/p106
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:552
    Full-text PDF :118
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024