|
Zapiski Nauchnykh Seminarov POMI, 2013, Volume 416, Pages 59–69
(Mi znsl5703)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
The property $\log(f)\in BMO(\mathbb R^n)$ in terms of the Riesz transformations
I. M. Vasilyev St. Petersburg State University, St. Petersburg, Russia
Abstract:
The condition mentioned in the title is equivalent to the representability of $f$ as a quotient $f=v_1/v_2$ where $v_1$ and $v_2$ obey the inequality $|R_jv_i|\le cv_i$, $i=1,2$, $j=1,\ldots,n$. Here $R_1,\ldots,R_n$ are the Riesz transformations.
Key words and phrases:
Riesz transformation, subharmonicity, reverse Hölder inequality.
Received: 24.02.2013
Citation:
I. M. Vasilyev, “The property $\log(f)\in BMO(\mathbb R^n)$ in terms of the Riesz transformations”, Investigations on linear operators and function theory. Part 41, Zap. Nauchn. Sem. POMI, 416, POMI, St. Petersburg, 2013, 59–69; J. Math. Sci. (N. Y.), 202:4 (2014), 519–525
Linking options:
https://www.mathnet.ru/eng/znsl5703 https://www.mathnet.ru/eng/znsl/v416/p59
|
Statistics & downloads: |
Abstract page: | 313 | Full-text PDF : | 99 | References: | 44 |
|