|
Zapiski Nauchnykh Seminarov POMI, 2013, Volume 416, Pages 188–201
(Mi znsl5702)
|
|
|
|
A series of operators in $L^2(\mathbb C)$ proportional to unitary ones
N. A. Shirokov St. Petersburg State University, St. Petersburg, Russia
Abstract:
We prove that singular integral operators in $L^2(\mathbb C)$ defined by the formula
$$
Tf(z)=\int_\mathbb C\frac{(w(z)-w(\xi))^n}{(z-\xi)^{n+2}}f(\xi)\,dm_2(\xi),
$$
where $|w(z)-w(\xi)|\leq c|z-\xi|$, $z,\xi\in\mathbb C,$ are proportional to unitary ones if and only if $w(z)=az$ or $w(z)= b\overline z$.
Key words and phrases:
Calderon's operators, singular integrals, unitary operators.
Received: 06.05.2013
Citation:
N. A. Shirokov, “A series of operators in $L^2(\mathbb C)$ proportional to unitary ones”, Investigations on linear operators and function theory. Part 41, Zap. Nauchn. Sem. POMI, 416, POMI, St. Petersburg, 2013, 188–201; J. Math. Sci. (N. Y.), 202:4 (2014), 613–622
Linking options:
https://www.mathnet.ru/eng/znsl5702 https://www.mathnet.ru/eng/znsl/v416/p188
|
Statistics & downloads: |
Abstract page: | 214 | Full-text PDF : | 48 | References: | 39 |
|