Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 416, Pages 188–201 (Mi znsl5702)  

A series of operators in $L^2(\mathbb C)$ proportional to unitary ones

N. A. Shirokov

St. Petersburg State University, St. Petersburg, Russia
References:
Abstract: We prove that singular integral operators in $L^2(\mathbb C)$ defined by the formula
$$ Tf(z)=\int_\mathbb C\frac{(w(z)-w(\xi))^n}{(z-\xi)^{n+2}}f(\xi)\,dm_2(\xi), $$
where $|w(z)-w(\xi)|\leq c|z-\xi|$, $z,\xi\in\mathbb C,$ are proportional to unitary ones if and only if $w(z)=az$ or $w(z)= b\overline z$.
Key words and phrases: Calderon's operators, singular integrals, unitary operators.
Received: 06.05.2013
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 202, Issue 4, Pages 613–622
DOI: https://doi.org/10.1007/s10958-014-2066-x
Bibliographic databases:
Document Type: Article
UDC: 517.518.13
Language: Russian
Citation: N. A. Shirokov, “A series of operators in $L^2(\mathbb C)$ proportional to unitary ones”, Investigations on linear operators and function theory. Part 41, Zap. Nauchn. Sem. POMI, 416, POMI, St. Petersburg, 2013, 188–201; J. Math. Sci. (N. Y.), 202:4 (2014), 613–622
Citation in format AMSBIB
\Bibitem{Shi13}
\by N.~A.~Shirokov
\paper A series of operators in $L^2(\mathbb C)$ proportional to unitary ones
\inbook Investigations on linear operators and function theory. Part~41
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 416
\pages 188--201
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5702}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2014
\vol 202
\issue 4
\pages 613--622
\crossref{https://doi.org/10.1007/s10958-014-2066-x}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84922078762}
Linking options:
  • https://www.mathnet.ru/eng/znsl5702
  • https://www.mathnet.ru/eng/znsl/v416/p188
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:214
    Full-text PDF :48
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024