Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 416, Pages 175–187 (Mi znsl5701)  

This article is cited in 5 scientific papers (total in 6 papers)

On the relationship between $\mathrm{AK}$-stability and $\mathrm{BMO}$-regularity

D. V. Rutsky

St. Petersburg Department of Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (283 kB) Citations (6)
References:
Abstract: Let $(X,Y)$ be a couple of Banach lattices of measurable functions on $\mathbb T\times\Omega$ having the Fatou property and satisfying a certin condition $(*)$ that makes it possible to consistently introduce the Hardy-type subspaces of $X$ and $Y$. We establish that the bounded $\mathrm{AK}$-stability property and the $\mathrm{BMO}$-regularity property are equivalent for such couples. If either lattice $XY'$ is Banach, or both lattices $X^2$ and $Y^2$ are Banach, or $Y=L_p$ with $p\in\{1,2,\infty\}$, then the $\mathrm{AK}$-stability property and the $\mathrm{BMO}$-regularity property are also equivalent for such couples $(X, Y)$.
Key words and phrases: $\mathrm{BMO}$-regularity, $\mathrm{AK}$-stability, real interpolation, complex interpolation.
Received: 24.06.2013
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 202, Issue 4, Pages 601–612
DOI: https://doi.org/10.1007/s10958-014-2065-y
Bibliographic databases:
Document Type: Article
UDC: 517.982.1+517.538
Language: Russian
Citation: D. V. Rutsky, “On the relationship between $\mathrm{AK}$-stability and $\mathrm{BMO}$-regularity”, Investigations on linear operators and function theory. Part 41, Zap. Nauchn. Sem. POMI, 416, POMI, St. Petersburg, 2013, 175–187; J. Math. Sci. (N. Y.), 202:4 (2014), 601–612
Citation in format AMSBIB
\Bibitem{Rut13}
\by D.~V.~Rutsky
\paper On the relationship between $\mathrm{AK}$-stability and $\mathrm{BMO}$-regularity
\inbook Investigations on linear operators and function theory. Part~41
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 416
\pages 175--187
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5701}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2014
\vol 202
\issue 4
\pages 601--612
\crossref{https://doi.org/10.1007/s10958-014-2065-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84922079226}
Linking options:
  • https://www.mathnet.ru/eng/znsl5701
  • https://www.mathnet.ru/eng/znsl/v416/p175
    Erratum
    This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:259
    Full-text PDF :54
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024