Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 416, Pages 98–107 (Mi znsl5696)  

This article is cited in 2 scientific papers (total in 2 papers)

Entire functions that have the smallest deviation from zero with respect to the uniform norm with weight

A. V. Gladkaya

St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (212 kB) Citations (2)
References:
Abstract: P. L. Chebyshev solved the problem of finding a polynomial of degree $n$ with leading coefficient one that has the smallest deviation from zero with respect to the maximum norm. A similar problem can be solved for some classes of entire functions. We find the entire function of exponential type $\sigma$ such that for any nonzero entire function $Q$ of type less than $\sigma$ and of class $A$ we have
$$ \sup_\mathbb R\left|\frac{f_\sigma-Q}{\rho_m}\right|>\sup_\mathbb R\left|\frac{f_\sigma}{\rho_m}\right|. $$
Key words and phrases: entire function, the least deviation from zero.
Received: 14.03.2013
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 202, Issue 4, Pages 546–552
DOI: https://doi.org/10.1007/s10958-014-2061-2
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: Russian
Citation: A. V. Gladkaya, “Entire functions that have the smallest deviation from zero with respect to the uniform norm with weight”, Investigations on linear operators and function theory. Part 41, Zap. Nauchn. Sem. POMI, 416, POMI, St. Petersburg, 2013, 98–107; J. Math. Sci. (N. Y.), 202:4 (2014), 546–552
Citation in format AMSBIB
\Bibitem{Gla13}
\by A.~V.~Gladkaya
\paper Entire functions that have the smallest deviation from zero with respect to the uniform norm with weight
\inbook Investigations on linear operators and function theory. Part~41
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 416
\pages 98--107
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5696}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2014
\vol 202
\issue 4
\pages 546--552
\crossref{https://doi.org/10.1007/s10958-014-2061-2}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84922079197}
Linking options:
  • https://www.mathnet.ru/eng/znsl5696
  • https://www.mathnet.ru/eng/znsl/v416/p98
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:325
    Full-text PDF :78
    References:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024