Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 416, Pages 5–58 (Mi znsl5694)  

This article is cited in 4 scientific papers (total in 4 papers)

Operator Lipschitz functions and model spaces

A. B. Aleksandrov

St. Petersburg Department of Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (524 kB) Citations (4)
References:
Abstract: Let $H^\infty$ denote the space of bounded analytic functions on the upper half plane $\mathbb C_+$. We prove that each function in the model space $H^\infty\cap\Theta\overline{H^\infty}$ is an operator Lipschitz function on $\mathbb R$ if and only if the inner function $\Theta$ is a usual Lipschitz function, i.e., $\Theta'\in H^\infty$.
Let $(\mathrm{OL})'(\mathbb R)$ denote the set of all functions $f\in L^\infty$ whose antiderivative is operator Lipschitz on the real line $\mathbb R$. We prove that $H^\infty\cap\Theta\overline{H^\infty}\subset(\mathrm{OL})'(\mathbb R)$ if $\Theta$ is a Blaschke product with the zeros satisfying the uniform Frostman condition. We deal also with the following questions. When does an inner function $\Theta$ belong to $(\mathrm{OL})'(\mathbb R)$? When does each divisor of an inner function $\Theta$ belong to $(\mathrm{OL})'(\mathbb R)$?
As an application, we deduce that $(\mathrm{OL})'(\mathbb R)$ is not a subalgebra of $L^\infty(\mathbb R)$.
Another application is related to a description of the sets of discontinuity points for the derivatives of the operator Lipschitz functions. We prove that a set $\mathcal E$, $\mathcal E\subset\mathbb R$, is a set of discontinuity points for the derivative of an operator Lipschitz function if and only if $\mathcal E$ is an $F_\sigma$ set of first category.
A considerable proportion of the results of the paper are based on a sufficient condition for operator Lipschitzness which was obtained by Arazy, Barton and Friedman. We give also a sufficient condition for operator Lipschitzness which is sharper than the Arazy–Barton–Friedman condition.
Key words and phrases: operator Lipschitz functions, inner functions, model spaces.
Received: 24.05.2013
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 202, Issue 4, Pages 485–518
DOI: https://doi.org/10.1007/s10958-014-2057-y
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: A. B. Aleksandrov, “Operator Lipschitz functions and model spaces”, Investigations on linear operators and function theory. Part 41, Zap. Nauchn. Sem. POMI, 416, POMI, St. Petersburg, 2013, 5–58; J. Math. Sci. (N. Y.), 202:4 (2014), 485–518
Citation in format AMSBIB
\Bibitem{Ale13}
\by A.~B.~Aleksandrov
\paper Operator Lipschitz functions and model spaces
\inbook Investigations on linear operators and function theory. Part~41
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 416
\pages 5--58
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5694}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2014
\vol 202
\issue 4
\pages 485--518
\crossref{https://doi.org/10.1007/s10958-014-2057-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84922073790}
Linking options:
  • https://www.mathnet.ru/eng/znsl5694
  • https://www.mathnet.ru/eng/znsl/v416/p5
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:343
    Full-text PDF :77
    References:66
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024