|
Zapiski Nauchnykh Seminarov POMI, 2013, Volume 415, Pages 163–193
(Mi znsl5693)
|
|
|
|
Atiyah–Patodi–Singer $\eta$-invariant and invariants of finite degree
A. N. Trefilov St. Petersburg State University, St. Petersburg, Russia
Abstract:
We consider the problem of computing the degree of invariants of the form $\eta\bmod A$, where $\eta$ is the Atiyah–Patodi–Singer invariant considered on smooth compact oriented three-dimensional submanifolds of $\mathbb R^n$ and $A$ is an additive subgroup of $\mathbb R$. We use the functional definition of invariants of finite degree. (A similar approach is used in the paper “Quadratic property of the rational semicharacteristic” by S. S. Podkorytov.) The main results are as follows. If $1\notin A$, the degree is infinite. If $\frac13\in A$, the degree equals one.
Key words and phrases:
Atiyah–Patodi–Singer $\eta$-invariant, invariants of finite degree.
Received: 05.03.2013
Citation:
A. N. Trefilov, “Atiyah–Patodi–Singer $\eta$-invariant and invariants of finite degree”, Geometry and topology. Part 12, Zap. Nauchn. Sem. POMI, 415, POMI, St. Petersburg, 2013, 163–193; J. Math. Sci. (N. Y.), 212:5 (2016), 622–642
Linking options:
https://www.mathnet.ru/eng/znsl5693 https://www.mathnet.ru/eng/znsl/v415/p163
|
Statistics & downloads: |
Abstract page: | 268 | Full-text PDF : | 59 | References: | 53 |
|