Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 415, Pages 137–162 (Mi znsl5692)  

This article is cited in 8 scientific papers (total in 8 papers)

Cycles of the hyperbolic plane of positive curvature

L. N. Romakina

Saratov State University, Saratov, Russia
Full-text PDF (355 kB) Citations (8)
References:
Abstract: Properties of hyperbolic and elliptic cycles of the hyperbolic plane $\widehat H$ of positive curvature are investigated. An analog of Pythagorean theorem for a right trivertex with a parabolic hypotenuse is proved. For each type of straight lines, formulas expressing the length of a chord of a hyperbolic cycle in terms of the cycle radius, the measure of the central angle corresponding to the chord, and the radius of curvature of $\widehat H$ are obtained. The plane $\widehat H$ is considered in projective interpretation.
Key words and phrases: hyperbolic plane $\widehat H$ of positive curvature, hyperbolic cycle, elliptic cycle, equidistant of the plane $\widehat H$, optical properties of cycles, analog of Pythagorean theorem, hyperbolic (elliptic) chord, length of a chord of a hyperbolic cycle.
Received: 07.01.2012
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 212, Issue 5, Pages 605–621
DOI: https://doi.org/10.1007/s10958-016-2693-5
Bibliographic databases:
Document Type: Article
UDC: 514.133
Language: Russian
Citation: L. N. Romakina, “Cycles of the hyperbolic plane of positive curvature”, Geometry and topology. Part 12, Zap. Nauchn. Sem. POMI, 415, POMI, St. Petersburg, 2013, 137–162; J. Math. Sci. (N. Y.), 212:5 (2016), 605–621
Citation in format AMSBIB
\Bibitem{Rom13}
\by L.~N.~Romakina
\paper Cycles of the hyperbolic plane of positive curvature
\inbook Geometry and topology. Part~12
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 415
\pages 137--162
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5692}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 212
\issue 5
\pages 605--621
\crossref{https://doi.org/10.1007/s10958-016-2693-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953300541}
Linking options:
  • https://www.mathnet.ru/eng/znsl5692
  • https://www.mathnet.ru/eng/znsl/v415/p137
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:336
    Full-text PDF :98
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024