Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 415, Pages 109–136 (Mi znsl5691)  

On homotopy invariants of finite degree

S. S. Podkorytov

St. Petersburg Department of Steklov Institute of Mathematics of the Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: Let $X$ and $Y$ be pointed topological spaces and let $V$ be an abelian group. By definition, a homotopy invariant $f\colon[X,Y]\to V$ has degree at most $r$ if there exists a homomorphism $l\colon\mathrm{Hom}(C_0(X^r),C_0(Y^r))\to V$ such that $f([a])=l(C_0(a^r))$ for all maps $a\colon X\to Y$. Here $C_0(a^r)\colon C_0(X^r)\to C_0(Y^r)$ is the homomorphism of the groups of unreduced zero-dimensional singular chains induced by the $r$th Cartesian power of $a$. Suppose that $X$ is a connected compact CW-complex and $Y$ is a nilpotent connected CW-complex with finitely generated homotopy groups. Then finite-degree homotopy invariants taking values in cyclic groups of prime orders distinguish homotopy classes of maps $X\to Y$. Several similar statements are shown to be false.
Key words and phrases: Shipley's convergence theorem.
Received: 27.11.2012
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 212, Issue 5, Pages 587–604
DOI: https://doi.org/10.1007/s10958-016-2692-6
Bibliographic databases:
Document Type: Article
UDC: 515.143.3
Language: Russian
Citation: S. S. Podkorytov, “On homotopy invariants of finite degree”, Geometry and topology. Part 12, Zap. Nauchn. Sem. POMI, 415, POMI, St. Petersburg, 2013, 109–136; J. Math. Sci. (N. Y.), 212:5 (2016), 587–604
Citation in format AMSBIB
\Bibitem{Pod13}
\by S.~S.~Podkorytov
\paper On homotopy invariants of finite degree
\inbook Geometry and topology. Part~12
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 415
\pages 109--136
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5691}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 212
\issue 5
\pages 587--604
\crossref{https://doi.org/10.1007/s10958-016-2692-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953327105}
Linking options:
  • https://www.mathnet.ru/eng/znsl5691
  • https://www.mathnet.ru/eng/znsl/v415/p109
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:174
    Full-text PDF :67
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024