Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 415, Pages 51–53 (Mi znsl5680)  

On linear wavefronts of convex polyhedra

V. V. Makeeva, I. V. Makeevb

a St. Petersburg State University, St. Petersburg, Russia
b St. Petersburg State University of Information Technologies, Mechanics and Optics, St. Petersburg, Russia
References:
Abstract: By a convex polyhedron we mean the intersection of a finite number of closed half-spaces in a Euclidean space whenever this intersection is bounded and has non-empty interior.
Let each hyperplane of the hyperfaces $f_1,\dots,f_m$ of a polyhedron $M$ in $\mathbb R^n$ move inwards $M$ in a self-parallel fashion at a non-negative constant speed (we assume that at least one face has non-zero speed). We thus obtain a “shrinking” polyhedron. Let $\operatorname{reg}(f_1),\dots,\operatorname{reg}(f_m)$ be the parts of $M$ (with disjoint interiors) that the faces $f_1,\dots,f_m$ sweep during the “shrinking” process.
The main result is as follows. Let $F$ be a functional on the class of convex compact subsets in $\mathbb R^n$. We assume that $F$ is nonnegative and continuous (with respect to the Hausdorff metric), and, furthermore, $F(K)=0$ if and only if $\dim(K)<n$. Then for every $m$-tuple $(x_1,\dots,x_m)$ of nonnegative reals with non-zero sum there exists an $m$-tuple of “speeds” for the faces $f_1,\dots,f_m$ such that the $m$-tuple $(F(\operatorname{reg}(f_1)),\dots,F(\operatorname{reg}(f_m)))$ is proportional to $(x_1,\dots,x_m)$.
Key words and phrases: linear wavefront, convex polyhedron, weighted skeleton.
Received: 29.12.2012
English version:
Journal of Mathematical Sciences (New York), 2016, Volume 212, Issue 5, Pages 550–551
DOI: https://doi.org/10.1007/s10958-016-2686-4
Bibliographic databases:
Document Type: Article
UDC: 514.172
Language: Russian
Citation: V. V. Makeev, I. V. Makeev, “On linear wavefronts of convex polyhedra”, Geometry and topology. Part 12, Zap. Nauchn. Sem. POMI, 415, POMI, St. Petersburg, 2013, 51–53; J. Math. Sci. (N. Y.), 212:5 (2016), 550–551
Citation in format AMSBIB
\Bibitem{MakMak13}
\by V.~V.~Makeev, I.~V.~Makeev
\paper On linear wavefronts of convex polyhedra
\inbook Geometry and topology. Part~12
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 415
\pages 51--53
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5680}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2016
\vol 212
\issue 5
\pages 550--551
\crossref{https://doi.org/10.1007/s10958-016-2686-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84953449534}
Linking options:
  • https://www.mathnet.ru/eng/znsl5680
  • https://www.mathnet.ru/eng/znsl/v415/p51
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:135
    Full-text PDF :42
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024