|
Zapiski Nauchnykh Seminarov POMI, 1997, Volume 247, Pages 156–165
(Mi znsl568)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Nuclearity of imbedding operators of Sobolev classes into weighted spaces
O. G. Parfenov Pskov State Pedagogical Institute
Abstract:
Let $\Omega$ be an open set in $\mathbf R^m$. Denote by $d_x$ the distance from a point $x$ to the boundary of $\Omega$:
$$
d_x=\inf_{y\in\partial\Omega}|x-y|;
$$
if $\Omega=\mathbf R^m$, then $d_x=1+|x|$. Define the class $\overset{\circ}{\mathbf W}{}_{p,\lambda}^l(\Omega)$ as the closure of $\mathbf C^\infty_0(\Omega)$ with respect to the norm
$$
\|f\|_{\overset{\circ}{\mathbf W}{}_{p,\lambda}^l(\Omega)}=\left(\int\limits_\Omega\left(\sum_{|\beta|=l}|D^\beta f|^p d^{-\lambda}_x+|f|^p d^{-pl-\lambda}_x\right)dx\right)^{1/p};
$$
here $l=1,2$; $1\le p<\infty$; $\lambda\in(-\infty,\infty)$. Let $\mu$ be a measure in $\Omega$ and $\mathbf L_q(\mu)$ the Lebesgue space. A criterion for the nuclearity of the imbedding of $\overset{\circ}{\mathbf W}{}_{p,\lambda}^l(\Omega)$ into $\mathbf L_q(\Omega)$ is given for $l>m$.
Received: 04.11.1996
Citation:
O. G. Parfenov, “Nuclearity of imbedding operators of Sobolev classes into weighted spaces”, Investigations on linear operators and function theory. Part 25, Zap. Nauchn. Sem. POMI, 247, POMI, St. Petersburg, 1997, 156–165; J. Math. Sci. (New York), 101:3 (2000), 3139–3145
Linking options:
https://www.mathnet.ru/eng/znsl568 https://www.mathnet.ru/eng/znsl/v247/p156
|
Statistics & downloads: |
Abstract page: | 129 | Full-text PDF : | 47 |
|