|
Zapiski Nauchnykh Seminarov POMI, 2013, Volume 414, Pages 181–192
(Mi znsl5673)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Improved stability for odd-dimensional orthogonal group
S. Sinchuk St. Petersburg State University, St. Petersburg, Russia
Abstract:
For a commutative ring $R$ satisfying the condition $\mathrm{sr}(R)\leq n$ and a root system $\Phi_l$ of type $B_n$ or $C_n$ we compute the kernel of the stabilization map $\mathrm K_1(\Phi_n,R)\to\mathrm K_1(\Phi_{n+1},R)$.
Key words and phrases:
$\mathrm K_1$-functor, stable rank, split classical groups.
Received: 03.02.2013
Citation:
S. Sinchuk, “Improved stability for odd-dimensional orthogonal group”, Problems in the theory of representations of algebras and groups. Part 25, Zap. Nauchn. Sem. POMI, 414, POMI, St. Petersburg, 2013, 181–192; J. Math. Sci. (N. Y.), 199:3 (2014), 343–349
Linking options:
https://www.mathnet.ru/eng/znsl5673 https://www.mathnet.ru/eng/znsl/v414/p181
|
Statistics & downloads: |
Abstract page: | 174 | Full-text PDF : | 48 | References: | 49 |
|