Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 413, Pages 173–182 (Mi znsl5663)  

This article is cited in 2 scientific papers (total in 2 papers)

On exact formulas for the number of integral points

A. Smirnov

Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН, Фонтанка 27, 191023 Санкт-Петербург, Россия
Full-text PDF (201 kB) Citations (2)
References:
Abstract: Exact formulas for the number of integral points in certain ellipses are obtained. These formulas generalize a formula of Eisenstein and belong to a rare type of exact formulas for the number of lattice points in curvilinear domains. The obtained formulas can be useful when studying the Riemann–Roch problem for arithmetic varieties.
Key words and phrases: arithmetic curve, Riemann–Roch theorem, Eisenstein, imaginary quadratic field, exact formula, lattice point.
Received: 20.09.2012
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 202, Issue 3, Pages 448–454
DOI: https://doi.org/10.1007/s10958-014-2054-1
Bibliographic databases:
Document Type: Article
UDC: 511.2
Language: English
Citation: A. Smirnov, “On exact formulas for the number of integral points”, Problems in the theory of representations of algebras and groups. Part 24, Zap. Nauchn. Sem. POMI, 413, POMI, St. Petersburg, 2013, 173–182; J. Math. Sci. (N. Y.), 202:3 (2014), 448–454
Citation in format AMSBIB
\Bibitem{Smi13}
\by A.~Smirnov
\paper On exact formulas for the number of integral points
\inbook Problems in the theory of representations of algebras and groups. Part~24
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 413
\pages 173--182
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5663}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3073064}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2014
\vol 202
\issue 3
\pages 448--454
\crossref{https://doi.org/10.1007/s10958-014-2054-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919922283}
Linking options:
  • https://www.mathnet.ru/eng/znsl5663
  • https://www.mathnet.ru/eng/znsl/v413/p173
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:247
    Full-text PDF :123
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024