|
Zapiski Nauchnykh Seminarov POMI, 2013, Volume 413, Pages 173–182
(Mi znsl5663)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On exact formulas for the number of integral points
A. Smirnov Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН, Фонтанка 27, 191023 Санкт-Петербург, Россия
Abstract:
Exact formulas for the number of integral points in certain ellipses are obtained. These formulas generalize a formula of Eisenstein and belong to a rare type of exact formulas for the number of lattice points in curvilinear domains. The obtained formulas can be useful when studying the Riemann–Roch problem for arithmetic varieties.
Key words and phrases:
arithmetic curve, Riemann–Roch theorem, Eisenstein, imaginary quadratic field, exact formula, lattice point.
Received: 20.09.2012
Citation:
A. Smirnov, “On exact formulas for the number of integral points”, Problems in the theory of representations of algebras and groups. Part 24, Zap. Nauchn. Sem. POMI, 413, POMI, St. Petersburg, 2013, 173–182; J. Math. Sci. (N. Y.), 202:3 (2014), 448–454
Linking options:
https://www.mathnet.ru/eng/znsl5663 https://www.mathnet.ru/eng/znsl/v413/p173
|
Statistics & downloads: |
Abstract page: | 247 | Full-text PDF : | 123 | References: | 41 |
|