Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 413, Pages 134–152 (Mi znsl5661)  

This article is cited in 3 scientific papers (total in 3 papers)

Serial group rings of finite groups. $p$-nilpotency

A. V. Kukharev, G. E. Puninski

Belarusian State University, Faculty of Mathematics and Mechanics, Minsk, Belarus
Full-text PDF (279 kB) Citations (3)
References:
Abstract: We prove that for every finite $p$-nilpotent group $G$ with a cyclic $p$-Sylow subgroup and any field of characteristic $p$, the group ring $FG$ is serial. As a corollary we show that the group ring of a finite group oven an arbitrary field of characteristic $2$ is serial if and only if its $2$-Sylow subgroup is cyclic.
Key words and phrases: finite group, group ring, serial ring.
Received: 24.04.2013
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 202, Issue 3, Pages 422–433
DOI: https://doi.org/10.1007/s10958-014-2052-3
Bibliographic databases:
Document Type: Article
UDC: 512.553.1+512.553.5
Language: Russian
Citation: A. V. Kukharev, G. E. Puninski, “Serial group rings of finite groups. $p$-nilpotency”, Problems in the theory of representations of algebras and groups. Part 24, Zap. Nauchn. Sem. POMI, 413, POMI, St. Petersburg, 2013, 134–152; J. Math. Sci. (N. Y.), 202:3 (2014), 422–433
Citation in format AMSBIB
\Bibitem{KukPun13}
\by A.~V.~Kukharev, G.~E.~Puninski
\paper Serial group rings of finite groups. $p$-nilpotency
\inbook Problems in the theory of representations of algebras and groups. Part~24
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 413
\pages 134--152
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5661}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3073062}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2014
\vol 202
\issue 3
\pages 422--433
\crossref{https://doi.org/10.1007/s10958-014-2052-3}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919952203}
Linking options:
  • https://www.mathnet.ru/eng/znsl5661
  • https://www.mathnet.ru/eng/znsl/v413/p134
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:266
    Full-text PDF :65
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024