Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 413, Pages 93–105 (Mi znsl5657)  

This article is cited in 2 scientific papers (total in 2 papers)

Commutators with some special elements in Chevalley groups

N. Gordeeva, E. W. Ellersb

a Russian State Pedagogical University, Moijka 48, 191186 St. Petersburg, Russia
b Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, Ontario M5S 2E4, Canada
Full-text PDF (235 kB) Citations (2)
References:
Abstract: Let $G=\widetilde G(K)$ where $\widetilde G$ is a simple and simply connected algebraic group that is defined and quasi-split over a field $K$. We consider commutators in $G$ with some regular elements. In particular, we prove (under some additional condition) that every unipotent regular element of $G$ is conjugate to a commutator $[g,v]$, where $g$ is any fixed semisimple regular element of $G$, and that every non-central element of $G$ is conjugate to a product $[g,\sigma][u_\mathrm{reg},\tau]$, where $g$ is some special element of the group $G$ and $u_\mathrm{reg}$ is some regular unipotent element of $G$.
Key words and phrases: commutators in Chevalley groups, regular elements in Chevalley groups, the Ore's problem.
Received: 16.04.2013
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 202, Issue 3, Pages 395–403
DOI: https://doi.org/10.1007/s10958-014-2049-y
Bibliographic databases:
Document Type: Article
UDC: 512.743
Language: English
Citation: N. Gordeev, E. W. Ellers, “Commutators with some special elements in Chevalley groups”, Problems in the theory of representations of algebras and groups. Part 24, Zap. Nauchn. Sem. POMI, 413, POMI, St. Petersburg, 2013, 93–105; J. Math. Sci. (N. Y.), 202:3 (2014), 395–403
Citation in format AMSBIB
\Bibitem{GorEll13}
\by N.~Gordeev, E.~W.~Ellers
\paper Commutators with some special elements in Chevalley groups
\inbook Problems in the theory of representations of algebras and groups. Part~24
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 413
\pages 93--105
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5657}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3073059}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2014
\vol 202
\issue 3
\pages 395--403
\crossref{https://doi.org/10.1007/s10958-014-2049-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919920074}
Linking options:
  • https://www.mathnet.ru/eng/znsl5657
  • https://www.mathnet.ru/eng/znsl/v413/p93
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:248
    Full-text PDF :43
    References:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024