Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 412, Pages 215–226 (Mi znsl5651)  

This article is cited in 2 scientific papers (total in 2 papers)

Limit theorems for two classes of random matrices with Gaussian elements

A. A. Naumov

Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (235 kB) Citations (2)
References:
Abstract: In this note, we consider ensembles of random symmetric matrices with Gaussian elements. Suppose that $\mathbb EX_{ij}=0$ and $\mathbb EX_{ij}^2=\sigma_{ij}^2$. We do not assume that all $\sigma_{ij}$ are equal. Assuming that the average of the normalized sums of variances in each row converges to one and Lindeberg condition holds true we prove that the empirical spectral distribution of eigenvalues converges to Wigner's semicircle law. We also provide analogue of this result for sample covariance matrices and prove convergence to the Marchenko–Pastur law.
Key words and phrases: random matrices, Marchenko–Pastur law, demicircle law, Catalan numbers.
Received: 17.02.2013
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 204, Issue 1, Pages 140–147
DOI: https://doi.org/10.1007/s10958-014-2192-5
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: Russian
Citation: A. A. Naumov, “Limit theorems for two classes of random matrices with Gaussian elements”, Probability and statistics. Part 19, Zap. Nauchn. Sem. POMI, 412, POMI, St. Petersburg, 2013, 215–226; J. Math. Sci. (N. Y.), 204:1 (2015), 140–147
Citation in format AMSBIB
\Bibitem{Nau13}
\by A.~A.~Naumov
\paper Limit theorems for two classes of random matrices with Gaussian elements
\inbook Probability and statistics. Part~19
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 412
\pages 215--226
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5651}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3073545}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 204
\issue 1
\pages 140--147
\crossref{https://doi.org/10.1007/s10958-014-2192-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84925486618}
Linking options:
  • https://www.mathnet.ru/eng/znsl5651
  • https://www.mathnet.ru/eng/znsl/v412/p215
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:231
    Full-text PDF :65
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024