|
Zapiski Nauchnykh Seminarov POMI, 2013, Volume 412, Pages 181–206
(Mi znsl5648)
|
|
|
|
A generalization of Chentsov's projection estimates
I. A. Ibragimovab a St. Petersburg Department of Steklov Mathematical Institute, St. Petersburg, Russia
b St. Petersburg State University, St. Petersburg, Russia
Abstract:
In 1962, N. N. Chentsov suggested the following method of estimation a functional parameter $\theta$ belonging to a Hilbert space $H$. He suggested to project $\theta$ on finite-dimensional subspaces of $H$ and consider as estimates of $\theta$ estimates of these projections. In this paper, we suggest to consider the projections on all reproducing kernel subspaces of $H$.
Key words and phrases:
Chentsov's projection estimates, non-parametric estimation theory, kernel estimates, reproducing kernels.
Received: 23.04.2013
Citation:
I. A. Ibragimov, “A generalization of Chentsov's projection estimates”, Probability and statistics. Part 19, Zap. Nauchn. Sem. POMI, 412, POMI, St. Petersburg, 2013, 181–206; J. Math. Sci. (N. Y.), 204:1 (2015), 116–133
Linking options:
https://www.mathnet.ru/eng/znsl5648 https://www.mathnet.ru/eng/znsl/v412/p181
|
Statistics & downloads: |
Abstract page: | 272 | Full-text PDF : | 86 | References: | 46 |
|