Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 411, Pages 63–84 (Mi znsl5632)  

This article is cited in 9 scientific papers (total in 9 papers)

Some results on Sobolev spaces with respect to a measure and applications to a new transport problem

J. Louet

Department de Mathématique, Bât. 425, Faculté des Sciences, Université Paris-Sud 11, F-91405 Orsay cedex, France
Full-text PDF (303 kB) Citations (9)
References:
Abstract: We recall some known and present several new results about Sobolev spaces defined with respect to a measure $\mu$, in particular a precise pointwise description of the tangent space to $\mu$ in dimension 1. This allows to obtain an interesting, original compactness result which stays open in $\mathbb R^d$, $d>1$, and can be applied to a new transport problem, with gradient penalization.
Key words and phrases: weighted Sobolev spaces, tangent space to a measure, optimal transport, elasticity.
Received: 28.02.2013
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 196, Issue 2, Pages 152–164
DOI: https://doi.org/10.1007/s10958-013-1647-4
Bibliographic databases:
Document Type: Article
UDC: 517.972
Language: English
Citation: J. Louet, “Some results on Sobolev spaces with respect to a measure and applications to a new transport problem”, Representation theory, dynamical systems, combinatorial methods. Part XXII, Zap. Nauchn. Sem. POMI, 411, POMI, St. Petersburg, 2013, 63–84; J. Math. Sci. (N. Y.), 196:2 (2014), 152–164
Citation in format AMSBIB
\Bibitem{Lou13}
\by J.~Louet
\paper Some results on Sobolev spaces with respect to a~measure and applications to a~new transport problem
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXII
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 411
\pages 63--84
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5632}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3048269}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2014
\vol 196
\issue 2
\pages 152--164
\crossref{https://doi.org/10.1007/s10958-013-1647-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84897037990}
Linking options:
  • https://www.mathnet.ru/eng/znsl5632
  • https://www.mathnet.ru/eng/znsl/v411/p63
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:155
    Full-text PDF :35
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024