Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 411, Pages 49–62 (Mi znsl5631)  

This article is cited in 4 scientific papers (total in 4 papers)

Amari–Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups

J. Lenellsa, G. Misiołekb

a Department of Mathematics, Baylor University, Waco, TX 76798, USA
b Department of Mathematics, University of Notre Dame, IN 46556, USA
Full-text PDF (250 kB) Citations (4)
References:
Abstract: We study the family of $\alpha$-connections of Amari–Chentsov on the homogeneous space $\mathcal D(M)/\mathcal D_\mu(M)$ of diffeomorphisms modulo volume-preserving diffeomorphims of a compact manifold $M$. We show that in some cases their geodesic equations yield completely integrable Hamiltonian systems.
Key words and phrases: diffeomorphism groups, Fisher–Rao metric, dual connections, integrable systems.
Received: 25.02.2013
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 196, Issue 2, Pages 144–151
DOI: https://doi.org/10.1007/s10958-013-1646-5
Bibliographic databases:
Document Type: Article
UDC: 517.972+514.7+519.248
Language: English
Citation: J. Lenells, G. Misiołek, “Amari–Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups”, Representation theory, dynamical systems, combinatorial methods. Part XXII, Zap. Nauchn. Sem. POMI, 411, POMI, St. Petersburg, 2013, 49–62; J. Math. Sci. (N. Y.), 196:2 (2014), 144–151
Citation in format AMSBIB
\Bibitem{LenMis13}
\by J.~Lenells, G.~Misio\l ek
\paper Amari--Chentsov connections and their geodesics on homogeneous spaces of diffeomorphism groups
\inbook Representation theory, dynamical systems, combinatorial methods. Part~XXII
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 411
\pages 49--62
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5631}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3048268}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2014
\vol 196
\issue 2
\pages 144--151
\crossref{https://doi.org/10.1007/s10958-013-1646-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84897057450}
Linking options:
  • https://www.mathnet.ru/eng/znsl5631
  • https://www.mathnet.ru/eng/znsl/v411/p49
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:183
    Full-text PDF :66
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024