|
Zapiski Nauchnykh Seminarov POMI, 2013, Volume 410, Pages 104–109
(Mi znsl5625)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On conditions of validity of the Poincaré inequality
A. I. Nazarovab, S. V. Poborchia a St. Petersburg State University, Department of Mathematics and Mechanics, St. Petersburg, Russia
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Abstract:
Let $l=1,2,\dots$, $p,q\ge1$, let $G$ be a domain in $\mathbb R^n$, and let $\mathcal P_l$ be the space of polynomials in $\mathbb R^n$ of degree less than $l$. We show that inclusion $\mathcal P_l\subset L_q(G)$ (and hence $\mathrm{mes}_n (G)<\infty$) is necessary for validity of the generalized Poincaré inequality
$$
\inf\{\|u-P\|_{L_q(G)}\colon P\in\mathcal P_l\}\le\mathrm{const}\,\|\nabla_l u\|_{L_p(G)},\quad u\in L_p^l(G).
$$
Thus, this inequality is equivalent to continuity of the embedding $L_p^l(G)\to L_q(G)$.
In the case of critical Sobolev exponent $q=np/(n-lp)$ for $lp<n$ this fact is not true. We give some sufficient conditions for validity of the Poincaré inequality in domains of infinite volume.
Key words and phrases:
the Poincaré inequality, embedding theorems.
Received: 12.12.2012
Citation:
A. I. Nazarov, S. V. Poborchi, “On conditions of validity of the Poincaré inequality”, Boundary-value problems of mathematical physics and related problems of function theory. Part 43, Zap. Nauchn. Sem. POMI, 410, POMI, St. Petersburg, 2013, 104–109; J. Math. Sci. (N. Y.), 195:1 (2013), 61–63
Linking options:
https://www.mathnet.ru/eng/znsl5625 https://www.mathnet.ru/eng/znsl/v410/p104
|
Statistics & downloads: |
Abstract page: | 475 | Full-text PDF : | 130 | References: | 68 |
|