Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 410, Pages 104–109 (Mi znsl5625)  

This article is cited in 1 scientific paper (total in 1 paper)

On conditions of validity of the Poincaré inequality

A. I. Nazarovab, S. V. Poborchia

a St. Petersburg State University, Department of Mathematics and Mechanics, St. Petersburg, Russia
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
Full-text PDF (179 kB) Citations (1)
References:
Abstract: Let $l=1,2,\dots$, $p,q\ge1$, let $G$ be a domain in $\mathbb R^n$, and let $\mathcal P_l$ be the space of polynomials in $\mathbb R^n$ of degree less than $l$. We show that inclusion $\mathcal P_l\subset L_q(G)$ (and hence $\mathrm{mes}_n (G)<\infty$) is necessary for validity of the generalized Poincaré inequality
$$ \inf\{\|u-P\|_{L_q(G)}\colon P\in\mathcal P_l\}\le\mathrm{const}\,\|\nabla_l u\|_{L_p(G)},\quad u\in L_p^l(G). $$
Thus, this inequality is equivalent to continuity of the embedding $L_p^l(G)\to L_q(G)$.
In the case of critical Sobolev exponent $q=np/(n-lp)$ for $lp<n$ this fact is not true. We give some sufficient conditions for validity of the Poincaré inequality in domains of infinite volume.
Key words and phrases: the Poincaré inequality, embedding theorems.
Received: 12.12.2012
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 195, Issue 1, Pages 61–63
DOI: https://doi.org/10.1007/s10958-013-1563-7
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: A. I. Nazarov, S. V. Poborchi, “On conditions of validity of the Poincaré inequality”, Boundary-value problems of mathematical physics and related problems of function theory. Part 43, Zap. Nauchn. Sem. POMI, 410, POMI, St. Petersburg, 2013, 104–109; J. Math. Sci. (N. Y.), 195:1 (2013), 61–63
Citation in format AMSBIB
\Bibitem{NazPob13}
\by A.~I.~Nazarov, S.~V.~Poborchi
\paper On conditions of validity of the Poincar\'e inequality
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~43
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 410
\pages 104--109
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5625}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3048262}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 195
\issue 1
\pages 61--63
\crossref{https://doi.org/10.1007/s10958-013-1563-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898956107}
Linking options:
  • https://www.mathnet.ru/eng/znsl5625
  • https://www.mathnet.ru/eng/znsl/v410/p104
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:475
    Full-text PDF :130
    References:68
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024