Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2013, Volume 410, Pages 36–103 (Mi znsl5624)  

The linearization principle for a free boundary problem for viscous, capillary incompressible fluids

S. J. N. Mosconia, V. A. Solonnikovb

a University of Catania
b St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences, Fontanka 27, 191023 St. Peterburg, Russia
References:
Abstract: We consider the free boundary problem associated to a viscous incompressible surface wave subjected to capillary force on the free upper surface and Dirchlet boundary condition on the fixed bottom surface. In the spatially periodic case, we prove a general linearization principle which gives, for sufficiently small perturbations from a linearly stable stationary solution, existence of a global solution of the associated system and exponential convergence of the latter to the stationary one. Convergence of the velocity, the pressure and the free boundary is proved in anisotropic Sobolev–Slobodetskii spaces, after a suitable change of variables is performed to formulate the problem in a fixed domain. We apply this linearization principle to the study of the rest state's stability in the case of general potential forces.
Key words and phrases: free boundary problems, lineartization principle, Sobolev spaces.
Received: 30.11.2012
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 195, Issue 1, Pages 20–60
DOI: https://doi.org/10.1007/s10958-013-1562-8
Bibliographic databases:
Document Type: Article
UDC: 517
Language: English
Citation: S. J. N. Mosconi, V. A. Solonnikov, “The linearization principle for a free boundary problem for viscous, capillary incompressible fluids”, Boundary-value problems of mathematical physics and related problems of function theory. Part 43, Zap. Nauchn. Sem. POMI, 410, POMI, St. Petersburg, 2013, 36–103; J. Math. Sci. (N. Y.), 195:1 (2013), 20–60
Citation in format AMSBIB
\Bibitem{MosSol13}
\by S.~J.~N.~Mosconi, V.~A.~Solonnikov
\paper The linearization principle for a~free boundary problem for viscous, capillary incompressible fluids
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~43
\serial Zap. Nauchn. Sem. POMI
\yr 2013
\vol 410
\pages 36--103
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5624}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3048261}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 195
\issue 1
\pages 20--60
\crossref{https://doi.org/10.1007/s10958-013-1562-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898991331}
Linking options:
  • https://www.mathnet.ru/eng/znsl5624
  • https://www.mathnet.ru/eng/znsl/v410/p36
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:218
    Full-text PDF :69
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024