Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2012, Volume 400, Pages 158–165 (Mi znsl5615)  

This article is cited in 8 scientific papers (total in 8 papers)

Haar multiresolution analysis and Haar bases on the ring of rational adeles

S. Evdokimov

St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg, Russia
Full-text PDF (206 kB) Citations (8)
References:
Abstract: We construct a family of Haar multiresolution analyses in the Hilbert space $L^2(\mathbb A)$ where $\mathbb A$ is the ring of adeles over the field $\mathbb Q$ of rationals. The corresponding discrete group of translations and scaling function are respectively the group of additive translations by elements of $\mathbb Q$ embedded diagonally in $\mathbb A$ and the characteristic function of the standard fundamental domain of this group. As a consequence we come to a family of orthonormal wavelet bases in $L^2(\mathbb A)$. We observe that both the number of generating wavelet functions and the number of elementary dilations are infinite.
Key words and phrases: ring of adeles, multiresolution analysis, Haar bases, generating wavelet function.
Received: 26.03.2012
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 192, Issue 2, Pages 215–219
DOI: https://doi.org/10.1007/s10958-013-1385-7
Bibliographic databases:
Document Type: Article
UDC: 511.2+517.5
Language: Russian
Citation: S. Evdokimov, “Haar multiresolution analysis and Haar bases on the ring of rational adeles”, Problems in the theory of representations of algebras and groups. Part 23, Zap. Nauchn. Sem. POMI, 400, POMI, St. Petersburg, 2012, 158–165; J. Math. Sci. (N. Y.), 192:2 (2013), 215–219
Citation in format AMSBIB
\Bibitem{Evd12}
\by S.~Evdokimov
\paper Haar multiresolution analysis and Haar bases on the ring of rational adeles
\inbook Problems in the theory of representations of algebras and groups. Part~23
\serial Zap. Nauchn. Sem. POMI
\yr 2012
\vol 400
\pages 158--165
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5615}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3029569}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 192
\issue 2
\pages 215--219
\crossref{https://doi.org/10.1007/s10958-013-1385-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884985360}
Linking options:
  • https://www.mathnet.ru/eng/znsl5615
  • https://www.mathnet.ru/eng/znsl/v400/p158
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:401
    Full-text PDF :76
    References:56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024