Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1988, Volume 169, Pages 76–83 (Mi znsl5599)  

The theory of perturbations for a polyharmonic operator with non-smooth periodic potential

Yu. E. Karpeshina
Abstract: In space $L_2(R^n)$, $n>1$ is considered operator $H_\alpha=(-\Delta)^\ell+\alpha V$, $\alpha\in[-1,1]$, $4\ell>n+1$, $V$ – real, periodical potential. She convergent series of perturbation theory for the eigenfunctions and eigenvalues on the rich set of kvasiimpulse are constructed.
Bibliographic databases:
Document Type: Article
UDC: 517.947
Language: Russian
Citation: Yu. E. Karpeshina, “The theory of perturbations for a polyharmonic operator with non-smooth periodic potential”, Questions of quantum field theory and statistical physics. Part 8, Zap. Nauchn. Sem. LOMI, 169, "Nauka", Leningrad. Otdel., Leningrad, 1988, 76–83
Citation in format AMSBIB
\Bibitem{Kar88}
\by Yu.~E.~Karpeshina
\paper The theory of perturbations for a polyharmonic operator with non-smooth periodic potential
\inbook Questions of quantum field theory and statistical physics. Part~8
\serial Zap. Nauchn. Sem. LOMI
\yr 1988
\vol 169
\pages 76--83
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5599}
\zmath{https://zbmath.org/?q=an:0676.47033}
Linking options:
  • https://www.mathnet.ru/eng/znsl5599
  • https://www.mathnet.ru/eng/znsl/v169/p76
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:111
    Full-text PDF :38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024