|
Zapiski Nauchnykh Seminarov LOMI, 1988, Volume 169, Pages 76–83
(Mi znsl5599)
|
|
|
|
The theory of perturbations for a polyharmonic operator with non-smooth periodic potential
Yu. E. Karpeshina
Abstract:
In space $L_2(R^n)$, $n>1$ is considered operator $H_\alpha=(-\Delta)^\ell+\alpha V$, $\alpha\in[-1,1]$, $4\ell>n+1$,
$V$ – real, periodical potential. She
convergent series of perturbation theory for the eigenfunctions
and eigenvalues on the rich set of kvasiimpulse are constructed.
Citation:
Yu. E. Karpeshina, “The theory of perturbations for a polyharmonic operator with non-smooth periodic potential”, Questions of quantum field theory and statistical physics. Part 8, Zap. Nauchn. Sem. LOMI, 169, "Nauka", Leningrad. Otdel., Leningrad, 1988, 76–83
Linking options:
https://www.mathnet.ru/eng/znsl5599 https://www.mathnet.ru/eng/znsl/v169/p76
|
Statistics & downloads: |
Abstract page: | 111 | Full-text PDF : | 38 |
|