|
Zapiski Nauchnykh Seminarov POMI, 1997, Volume 247, Pages 7–14
(Mi znsl559)
|
|
|
|
On a uniqueness theorem for functions with a sparse spectrum
A. B. Aleksandrov St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Abstract:
We present an example of a set $\Lambda\in\mathbb Z$ satisfying the following two conditions:
1) there exists a nonzero positive singular measure on the unit circle $\mathbb T$ with spectrum in $\Lambda$;
2) if the spectrum of $f\in L^1(\mathbb T)$ is contained in $\Lambda$ and $f$ vanishes on a set of positive measure, then $f=0$.
Received: 27.01.1997
Citation:
A. B. Aleksandrov, “On a uniqueness theorem for functions with a sparse spectrum”, Investigations on linear operators and function theory. Part 25, Zap. Nauchn. Sem. POMI, 247, POMI, St. Petersburg, 1997, 7–14; J. Math. Sci. (New York), 101:3 (2000), 3049–3052
Linking options:
https://www.mathnet.ru/eng/znsl559 https://www.mathnet.ru/eng/znsl/v247/p7
|
Statistics & downloads: |
Abstract page: | 194 | Full-text PDF : | 60 |
|