Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1988, Volume 167, Pages 169–178 (Mi znsl5573)  

This article is cited in 5 scientific papers (total in 5 papers)

Knaster's problem on continuous mappings of a sphere into a Euclidean space

V. V. Makeev
Full-text PDF (538 kB) Citations (5)
Abstract: A survey of known results and additional new ones on Knaster's problem: on the standard sphere $S^{n-1}\subset R^n$ find configurations of points $A_1,\dots,A_k$, such that for any continuous map $f\colon S^{n-1}\to R^m$ one can find a rotation $a$ of the sphere $S^{n-1}$ such that $f(a(A_1))=\dotsb=f(a(A_k))$ and some problems closely connected with it. We study the connection of Knaster's problem with equivariant mappings, with Dvoretsky's theorem on the existence of an almost spherical section of a multidimensional convex body, and we also study the set $\{a\in SO(n)\mid f(a(A_1))=\dotsb=f(a(A_k))\}$ of solutions of Knaster's problem for a fixed configuration of points $A_1,\dots,A_k\in S^{n-1}$ and a map $f\colon S^{n-1}\to R^m$ in general position. Unsolved problems are posed.
Bibliographic databases:
Document Type: Article
UDC: 514.172
Language: Russian
Citation: V. V. Makeev, “Knaster's problem on continuous mappings of a sphere into a Euclidean space”, Investigations in topology. Part 6, Zap. Nauchn. Sem. LOMI, 167, "Nauka", Leningrad. Otdel., Leningrad, 1988, 169–178
Citation in format AMSBIB
\Bibitem{Mak88}
\by V.~V.~Makeev
\paper Knaster's problem on continuous mappings of a sphere into a Euclidean space
\inbook Investigations in topology. Part~6
\serial Zap. Nauchn. Sem. LOMI
\yr 1988
\vol 167
\pages 169--178
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5573}
\zmath{https://zbmath.org/?q=an:0671.55004}
Linking options:
  • https://www.mathnet.ru/eng/znsl5573
  • https://www.mathnet.ru/eng/znsl/v167/p169
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:136
    Full-text PDF :54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024