|
Zapiski Nauchnykh Seminarov LOMI, 1988, Volume 167, Pages 157–158
(Mi znsl5570)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On the radius of a compact set in Hilbert space
N. M. Gulevich
Abstract:
In this note we improve the formula $r(A)\leq\frac{1}{\sqrt{2}}\delta(A)$ proved by Routledge for Hilbert spaces. We show that if $A$ is a relatively compact set, then $r(A)\leq\frac{1}{\sqrt{2}}\delta(A)$.
Citation:
N. M. Gulevich, “On the radius of a compact set in Hilbert space”, Investigations in topology. Part 6, Zap. Nauchn. Sem. LOMI, 167, "Nauka", Leningrad. Otdel., Leningrad, 1988, 157–158
Linking options:
https://www.mathnet.ru/eng/znsl5570 https://www.mathnet.ru/eng/znsl/v167/p157
|
Statistics & downloads: |
Abstract page: | 97 | Full-text PDF : | 34 |
|