Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1988, Volume 167, Pages 157–158 (Mi znsl5570)  

This article is cited in 1 scientific paper (total in 1 paper)

On the radius of a compact set in Hilbert space

N. M. Gulevich
Full-text PDF (110 kB) Citations (1)
Abstract: In this note we improve the formula $r(A)\leq\frac{1}{\sqrt{2}}\delta(A)$ proved by Routledge for Hilbert spaces. We show that if $A$ is a relatively compact set, then $r(A)\leq\frac{1}{\sqrt{2}}\delta(A)$.
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: N. M. Gulevich, “On the radius of a compact set in Hilbert space”, Investigations in topology. Part 6, Zap. Nauchn. Sem. LOMI, 167, "Nauka", Leningrad. Otdel., Leningrad, 1988, 157–158
Citation in format AMSBIB
\Bibitem{Gul88}
\by N.~M.~Gulevich
\paper On the radius of a compact set in Hilbert space
\inbook Investigations in topology. Part~6
\serial Zap. Nauchn. Sem. LOMI
\yr 1988
\vol 167
\pages 157--158
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5570}
\zmath{https://zbmath.org/?q=an:0664.46023}
Linking options:
  • https://www.mathnet.ru/eng/znsl5570
  • https://www.mathnet.ru/eng/znsl/v167/p157
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:97
    Full-text PDF :34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024