Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1997, Volume 246, Pages 191–195 (Mi znsl557)  

This article is cited in 14 scientific papers (total in 14 papers)

Of affine images of a rhombododecaedron circumscribed about a convex body in $\mathbb R^3$

V. V. Makeev

Saint-Petersburg State University
Abstract: The main result of the paper is dual to an earlier theorem by the author concerning affine images of a cubeoctahedron inscribed in a three-dimensional convex body. The rhombododecaedron is the polytope dual to the cubeoctahedron; the latter is the convex hull of the midpoints of the edges of a cube.
Theorem. Every convex body in $\mathbb R^3$ except for those mentioned below admits an affine-circumscribed rhombododecaedron. A possible exception is a body containing a parallelogram $P$ and contained in a cylinder over $P$.
The author does not know whether there is a three-dimensional convex body exceptional on the sense of the above theorem.
Received: 24.02.1997
English version:
Journal of Mathematical Sciences (New York), 2000, Volume 100, Issue 3, Pages 2307–2309
DOI: https://doi.org/10.1007/s10958-000-0015-3
Bibliographic databases:
UDC: 514.172
Language: Russian
Citation: V. V. Makeev, “Of affine images of a rhombododecaedron circumscribed about a convex body in $\mathbb R^3$”, Geometry and topology. Part 2, Zap. Nauchn. Sem. POMI, 246, POMI, St. Petersburg, 1997, 191–195; J. Math. Sci. (New York), 100:3 (2000), 2307–2309
Citation in format AMSBIB
\Bibitem{Mak97}
\by V.~V.~Makeev
\paper Of affine images of a rhombododecaedron circumscribed about a convex body in $\mathbb R^3$
\inbook Geometry and topology. Part~2
\serial Zap. Nauchn. Sem. POMI
\yr 1997
\vol 246
\pages 191--195
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl557}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1631812}
\zmath{https://zbmath.org/?q=an:0921.52001}
\transl
\jour J. Math. Sci. (New York)
\yr 2000
\vol 100
\issue 3
\pages 2307--2309
\crossref{https://doi.org/10.1007/s10958-000-0015-3}
Linking options:
  • https://www.mathnet.ru/eng/znsl557
  • https://www.mathnet.ru/eng/znsl/v246/p191
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:287
    Full-text PDF :113
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024