Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2012, Volume 409, Pages 187–211 (Mi znsl5519)  

This article is cited in 17 scientific papers (total in 17 papers)

Construction of the Rayleigh approximation for axisymmetric multilayered particles using the eigenfunctions of the Laplace operator

V. G. Farafonov, M. V. Sokolovskaja

Saint-Petersburg State University of Aerospace Instrumentation, Saint-Petersburg, Russia
References:
Abstract: The Rayleigh approximation is constructed from solution of the electrostatic problem for axisymmetric multilayered particles. The approach used is based on consideration of the surface integral equations analogous to those used in the extended boundary condition method (EBCM) applied to solve the electromagnetic problems. The electric fields are related with the scalar potentials that are represented by their expansions in terms of the eigenfunctions of the Laplace operator written in spheroidal and spherical coordinates. The unknown expansion coefficients are derived from infinite linear algebraic equations. The explicit solution found in spheroidal coordinates for multilayered spheroids coincides with the known solutions for the homogeneous and core-mantle particles.
Key words and phrases: light scattering, non-spherical particles, Rayleigh approximation.
Received: 30.11.2012
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 194, Issue 1, Pages 104–116
DOI: https://doi.org/10.1007/s10958-013-1511-6
Bibliographic databases:
Document Type: Article
UDC: 535.36+518.3
Language: Russian
Citation: V. G. Farafonov, M. V. Sokolovskaja, “Construction of the Rayleigh approximation for axisymmetric multilayered particles using the eigenfunctions of the Laplace operator”, Mathematical problems in the theory of wave propagation. Part 42, Zap. Nauchn. Sem. POMI, 409, POMI, St. Petersburg, 2012, 187–211; J. Math. Sci. (N. Y.), 194:1 (2013), 104–116
Citation in format AMSBIB
\Bibitem{FarSok12}
\by V.~G.~Farafonov, M.~V.~Sokolovskaja
\paper Construction of the Rayleigh approximation for axisymmetric multilayered particles using the eigenfunctions of the Laplace operator
\inbook Mathematical problems in the theory of wave propagation. Part~42
\serial Zap. Nauchn. Sem. POMI
\yr 2012
\vol 409
\pages 187--211
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5519}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3032236}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 194
\issue 1
\pages 104--116
\crossref{https://doi.org/10.1007/s10958-013-1511-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888260356}
Linking options:
  • https://www.mathnet.ru/eng/znsl5519
  • https://www.mathnet.ru/eng/znsl/v409/p187
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:492
    Full-text PDF :86
    References:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024