Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2012, Volume 409, Pages 130–150 (Mi znsl5516)  

This article is cited in 1 scientific paper (total in 1 paper)

Structure of the spectrum of the periodic family of identical cells connected through apertures of reducing sizes

S. A. Nazarovab, J. Taskinenc

a Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia
b St. Petersburg State University, St. Petersburg, Russia
c University of Helsinki, Department of Mathematics and Statistics, Helsinki, Finland
Full-text PDF (310 kB) Citations (1)
References:
Abstract: A waveguide is constructed such that the Dirichlet problem for the Laplace operator gets the essential spectrum implying a countable set of points in the real positive semi-axis. The waveguide is obtained by joining identical cells through apertures in their common walls. Size of the apertures decreases at distance from the “central” cell. It is shown that the first point of the essential spectrum is a limit of an infinite sequence of eigenvalues of the problem from its discrete spectrum. A hypothesis on the structure of the discrete spectrum inside spectral gaps is formulated and other open questions are mentioned.
Key words and phrases: Dirichlet problem, Helmholtz operator, waveguide, essential spectrum, infinite family of spectral gaps.
Received: 21.11.2012
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 194, Issue 1, Pages 72–82
DOI: https://doi.org/10.1007/s10958-013-1508-1
Bibliographic databases:
Document Type: Article
UDC: 517.956.227
Language: Russian
Citation: S. A. Nazarov, J. Taskinen, “Structure of the spectrum of the periodic family of identical cells connected through apertures of reducing sizes”, Mathematical problems in the theory of wave propagation. Part 42, Zap. Nauchn. Sem. POMI, 409, POMI, St. Petersburg, 2012, 130–150; J. Math. Sci. (N. Y.), 194:1 (2013), 72–82
Citation in format AMSBIB
\Bibitem{NazTas12}
\by S.~A.~Nazarov, J.~Taskinen
\paper Structure of the spectrum of the periodic family of identical cells connected through apertures of reducing sizes
\inbook Mathematical problems in the theory of wave propagation. Part~42
\serial Zap. Nauchn. Sem. POMI
\yr 2012
\vol 409
\pages 130--150
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5516}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3032233}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 194
\issue 1
\pages 72--82
\crossref{https://doi.org/10.1007/s10958-013-1508-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898972295}
Linking options:
  • https://www.mathnet.ru/eng/znsl5516
  • https://www.mathnet.ru/eng/znsl/v409/p130
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:380
    Full-text PDF :78
    References:85
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024