Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2012, Volume 409, Pages 55–79 (Mi znsl5512)  

This article is cited in 17 scientific papers (total in 17 papers)

Leontovich–Fock parabolic equation method in the problems of short-wave diffraction by prolate bodies

N. Ya. Kirpichnikova, M. M. Popov

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: Application of the parabolic equation to the problems of short-wave diffraction by prolate convex bodies in rotational symmetric case is considered. The wave field is constructed in the Fock's region and in the shaded part of the body where creeping waves appear. In the problems under consideration the following two large parameters arise: $\mathbf M=(k\rho/2)^{1/3}$ and $\mathbf\Lambda=\rho/f$, where $k$ is wave number, $\rho$ is radius of curvature along geodesic (meridians) and $f$ is radius of curvature in the transversal direction. The first one is so-called Fock parameter and the second one $\mathbf\Lambda$ characterizes prolateness of the body. Under condition $\mathbf\Lambda=\mathbf M^{2-\varepsilon}$, $0<\varepsilon<2$, the parabolic equation method in classical form is valid and describes the wave field in terms of Airy and integrals of it. In the case when $\varepsilon=0$ some coefficients in the corresponding recurrent equations become singular and question of solvability of the equations in terms of regular and smooth functions remains open.
Key words and phrases: short wave, diffraction by a prolate body, equation of Leontovich–Fock, creeping waves, matching of local asymptotics.
Received: 27.11.2012
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 194, Issue 1, Pages 30–43
DOI: https://doi.org/10.1007/s10958-013-1504-5
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: N. Ya. Kirpichnikova, M. M. Popov, “Leontovich–Fock parabolic equation method in the problems of short-wave diffraction by prolate bodies”, Mathematical problems in the theory of wave propagation. Part 42, Zap. Nauchn. Sem. POMI, 409, POMI, St. Petersburg, 2012, 55–79; J. Math. Sci. (N. Y.), 194:1 (2013), 30–43
Citation in format AMSBIB
\Bibitem{KirPop12}
\by N.~Ya.~Kirpichnikova, M.~M.~Popov
\paper Leontovich--Fock parabolic equation method in the problems of short-wave diffraction by prolate bodies
\inbook Mathematical problems in the theory of wave propagation. Part~42
\serial Zap. Nauchn. Sem. POMI
\yr 2012
\vol 409
\pages 55--79
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5512}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3032229}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 194
\issue 1
\pages 30--43
\crossref{https://doi.org/10.1007/s10958-013-1504-5}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84898967020}
Linking options:
  • https://www.mathnet.ru/eng/znsl5512
  • https://www.mathnet.ru/eng/znsl/v409/p55
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:517
    Full-text PDF :147
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024