Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2012, Volume 409, Pages 17–39 (Mi znsl5509)  

This article is cited in 13 scientific papers (total in 13 papers)

Dynamical system with boundary control associated with symmetric semi-bounded operator

M. I. Belishev, M. N. Demchenko

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences, St. Petersburg, Russia
References:
Abstract: Let $L_0$ be a closed densely defined symmetric semi-bounded operator with nonzero defect indexes in a separable Hilbert space $\mathcal H$. It determines a Green system $\{\mathcal H,\mathcal B;L_0,\Gamma_1,\Gamma_2\}$, where $\mathcal B$ is a Hilbert space, and $\Gamma_i\colon\mathcal H\to\mathcal B$ are the operators related through the Green formula
$$ (L_0^*u, v)_\mathcal H-(u,L_0^*v)_\mathcal H=(\Gamma_1u,\Gamma_2v)_\mathcal B-(\Gamma_2u,\Gamma_1v)_\mathcal B. $$
The boundary space $\mathcal B$ and boundary operators $\Gamma_i$ are chosen canonically in the framework of the Vishik theory.
With the Green system one associates a dynamical system with boundary control (DSBC)
\begin{align*} &u_{tt}+L_0^*u=0,&&u(t)\in\mathcal H,\,\,t>0,\\ &u|_{t=0}=u_t|_{t=0}=0,&&\\ &\Gamma_1u=f,&&f(t)\in\mathcal B,\,\,\,t\geqslant0. \end{align*}
We show that this system is controllable if and only if the operator $L_0$ is completely non-self-adjoint.
A version of the notion of a wave spectrum of $L_0$ is introduced. It is a topological space determined by $L_0$ and constructed from reachable sets of the DSBC.
Key words and phrases: dynamical system with boundary control, Green system, wave spectrum, reconstruction of manifolds.
Received: 27.11.2012
English version:
Journal of Mathematical Sciences (New York), 2013, Volume 194, Issue 1, Pages 8–20
DOI: https://doi.org/10.1007/s10958-013-1501-8
Bibliographic databases:
Document Type: Article
UDC: 517.951
Language: Russian
Citation: M. I. Belishev, M. N. Demchenko, “Dynamical system with boundary control associated with symmetric semi-bounded operator”, Mathematical problems in the theory of wave propagation. Part 42, Zap. Nauchn. Sem. POMI, 409, POMI, St. Petersburg, 2012, 17–39; J. Math. Sci. (N. Y.), 194:1 (2013), 8–20
Citation in format AMSBIB
\Bibitem{BelDem12}
\by M.~I.~Belishev, M.~N.~Demchenko
\paper Dynamical system with boundary control associated with symmetric semi-bounded operator
\inbook Mathematical problems in the theory of wave propagation. Part~42
\serial Zap. Nauchn. Sem. POMI
\yr 2012
\vol 409
\pages 17--39
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5509}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3032226}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2013
\vol 194
\issue 1
\pages 8--20
\crossref{https://doi.org/10.1007/s10958-013-1501-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899442082}
Linking options:
  • https://www.mathnet.ru/eng/znsl5509
  • https://www.mathnet.ru/eng/znsl/v409/p17
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:238
    Full-text PDF :95
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024