Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2012, Volume 408, Pages 245–267 (Mi znsl5503)  

This article is cited in 2 scientific papers (total in 2 papers)

Contribution to the theory of Pitman estimators

A. M. Kagana, Tinghui Yua, A. Barronb, M. Madimanb

a Department of Mathematics, University of Maryland, College Park, MD
b Department of Statistics, Yale University, New Haven, CT
Full-text PDF (295 kB) Citations (2)
References:
Abstract: New inequalities are proved for the variance of the Pitman estimators (minimum variance equivariant estimators) of $\theta$ constructed from samples of fixed size from populations $F(x-\theta)$. The inequalities are closely related to the classical Stam inequality for the Fisher information, its analog in small samples, and a powerful variance drop inequality. The only condition required is finite variance of $F$; even the absolute continuity of $F$ is not assumed. As corollaries of the main inequalities for small samples, one obtains alternate proofs of known properties of the Fisher information, as well as interesting new observations like the fact that the variance of the Pitman estimator based on a sample of size $n$ scaled by $n$ monotonically decreases in $n$. Extensions of the results to the polynomial versions of the Pitman estimators and a multivariate location parameter are given. Also, the search for characterization of equality conditions for one of the inequalities leads to a Cauchy-type functional equation for independent random variables, and an interesting new behavior of its solutions is described.
Key words and phrases: Fisher information, location parameter, monotonicity of the variance, Stam inequality.
Received: 15.10.2012
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 199, Issue 2, Pages 202–214
DOI: https://doi.org/10.1007/s10958-014-1847-6
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: English
Citation: A. M. Kagan, Tinghui Yu, A. Barron, M. Madiman, “Contribution to the theory of Pitman estimators”, Probability and statistics. Part 18, Zap. Nauchn. Sem. POMI, 408, POMI, St. Petersburg, 2012, 245–267; J. Math. Sci. (N. Y.), 199:2 (2014), 202–214
Citation in format AMSBIB
\Bibitem{KagYuBar12}
\by A.~M.~Kagan, Tinghui~Yu, A.~Barron, M.~Madiman
\paper Contribution to the theory of Pitman estimators
\inbook Probability and statistics. Part~18
\serial Zap. Nauchn. Sem. POMI
\yr 2012
\vol 408
\pages 245--267
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5503}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3032219}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2014
\vol 199
\issue 2
\pages 202--214
\crossref{https://doi.org/10.1007/s10958-014-1847-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902268590}
Linking options:
  • https://www.mathnet.ru/eng/znsl5503
  • https://www.mathnet.ru/eng/znsl/v408/p245
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:175
    Full-text PDF :54
    References:57
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024