Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2012, Volume 408, Pages 102–114 (Mi znsl5495)  

This article is cited in 1 scientific paper (total in 2 paper)

Nonsingular transformations of the symmetric Lévy processes

A. M. Vershika, N. V. Smorodinab

a St. Petersburg Department of the Steklov Mathematical Institute, St. Petersburg, Russia
b St. Petersburg State University, St. Petersburg, Russia
Full-text PDF (236 kB) Citations (2)
References:
Abstract: In this paper we consider the group of transformations of the space of trajectories of the symmetric $\alpha$-stable Lévy laws with constant of stability $\alpha\in[0;2)$. For $\alpha=0$ the true analog of the stable Lévy process (so called $0$-stable process) is the $\gamma$-process, whose measure is quasi-invariant under the action of the group of multiplicators $\mathcal M\equiv\{M_a\colon a\geq0;\lg a\in L^1\}$ – the action of $M_a$ on trajectories $\omega(.)$ is $(M_a\omega)(t)=a(t)\omega(t)$. For each $\alpha<2$ an appropriate conjugacy takes the group $\mathcal M$ to a group $\mathcal M_\alpha$ of nonlinear transformations of the trajectories and the law of the corresponding stable process is quasi-invariant under those groups. We prove that when $\alpha=2$, the appropriate changing of the coordinates reduces the group of symmetries to the Cameron–Martin group of nonsingular translations of the trajectories of Wiener process.
Key words and phrases: Wiener measure, gamma-mesure, deformation of the symmery groups.
Received: 08.10.2012
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 199, Issue 2, Pages 123–129
DOI: https://doi.org/10.1007/s10958-014-1839-6
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: A. M. Vershik, N. V. Smorodina, “Nonsingular transformations of the symmetric Lévy processes”, Probability and statistics. Part 18, Zap. Nauchn. Sem. POMI, 408, POMI, St. Petersburg, 2012, 102–114; J. Math. Sci. (N. Y.), 199:2 (2014), 123–129
Citation in format AMSBIB
\Bibitem{VerSmo12}
\by A.~M.~Vershik, N.~V.~Smorodina
\paper Nonsingular transformations of the symmetric L\'evy processes
\inbook Probability and statistics. Part~18
\serial Zap. Nauchn. Sem. POMI
\yr 2012
\vol 408
\pages 102--114
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5495}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3032211}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2014
\vol 199
\issue 2
\pages 123--129
\crossref{https://doi.org/10.1007/s10958-014-1839-6}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902244754}
Linking options:
  • https://www.mathnet.ru/eng/znsl5495
  • https://www.mathnet.ru/eng/znsl/v408/p102
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:311
    Full-text PDF :65
    References:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024