Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2012, Volume 408, Pages 9–42 (Mi znsl5490)  

This article is cited in 2 scientific papers (total in 2 papers)

On the asymptotic distribution of the singular values of powers of random matrices

N. Alexeeva, F. Götzeb, A. Tikhomirovc

a Saint-Petersburg State University, Saint-Petersburg, Russia
b Bielefeld University, Department of Mathematics, Bielefeld, Germany
c Komi Scientific Center of Ural Branch of RAS, Syktyvkar State University, Syktyvkar, Russia
Full-text PDF (378 kB) Citations (2)
References:
Abstract: We consider powers of random matrices with independent entries. Let $X_{ij}$, $i,j\ge1$, be independent complex random variables with $\mathbf EX_{ij}=0$ and $\mathbf E|X_{ij}|^2=1$ and let $\mathbf X$ denote an $n\times n$ matrix with $[\mathbf X]_{ij}=X_{ij}$, for $1\le i$, $j\le n$. Denote by $s_1^{(m)}\ge\ldots\ge s_n^{(m)}$ the singular values of the random matrix $\mathbf W:={n^{-\frac m2}}\mathbf X^m$ and define the empirical distribution of the squared singular values by
$$ \mathcal F_n^{(m)}(x)=\frac1n\sum_{k=1}^nI_{\{{s_k^{(m)}}^2\le x\}}, $$
where $I_{\{B\}}$ denotes the indicator of an event $B$. We prove that that the expected spectral distribution $F_n^{(m)}(x)=\mathbf E\mathcal F_n^{(m)}(x)$ converges under a Lindeberg condition to the distribution function $G^{(m)}(x)$ defined by its moments
$$ \alpha_k(m):=\int_\mathbb Rx^k\,dG(x)=\frac1{mk+1}\binom{km+k}k. $$
Key words and phrases: Fuss–Catalan numbers, random matrices, singular values, powers of random matrices.
Received: 01.11.2012
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 199, Issue 2, Pages 68–87
DOI: https://doi.org/10.1007/s10958-014-1834-y
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: N. Alexeev, F. Götze, A. Tikhomirov, “On the asymptotic distribution of the singular values of powers of random matrices”, Probability and statistics. Part 18, Zap. Nauchn. Sem. POMI, 408, POMI, St. Petersburg, 2012, 9–42; J. Math. Sci. (N. Y.), 199:2 (2014), 68–87
Citation in format AMSBIB
\Bibitem{AleGotTik12}
\by N.~Alexeev, F.~G\"otze, A.~Tikhomirov
\paper On the asymptotic distribution of the singular values of powers of random matrices
\inbook Probability and statistics. Part~18
\serial Zap. Nauchn. Sem. POMI
\yr 2012
\vol 408
\pages 9--42
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5490}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3032206}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2014
\vol 199
\issue 2
\pages 68--87
\crossref{https://doi.org/10.1007/s10958-014-1834-y}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902271904}
Linking options:
  • https://www.mathnet.ru/eng/znsl5490
  • https://www.mathnet.ru/eng/znsl/v408/p9
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:301
    Full-text PDF :53
    References:62
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024