Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2012, Volume 407, Pages 35–76 (Mi znsl5485)  

Extended fuzzy constructive logic

I. D. Zaslavsky

Institute for Informatics and Automation Problems, Yerevan, Armenia
References:
Abstract: A logical system is introduced which is similar to the “fuzzy constructive logic” earlier developed by the author, however this new system gives larger possibilities for establishing the truth of predicate formulas and logical deductions in the framework of this logic. The notions of strong and weak FCL$^*$-validity of predicate formulas are defined. It is proved that every formula deducible in the constructive (intuitionistic) predicate calculus is strongly FCL$^*$-valid. From other hand it is proved that some formulas not deducible in the mentioned calculus are not weakly FCL$^*$-valid. A definition is given for the semantics of the traditional constructive logic on the base of the developed logical apparatus. Theorems are proved showing differences between the extended fuzzy constructive logic and the traditional constructive logic.
Key words and phrases: recursive, predicate, conjunction, disjunction, implication, quantifier, ideal.
Received: 06.11.2012
English version:
Journal of Mathematical Sciences (New York), 2014, Volume 199, Issue 1, Pages 16–35
DOI: https://doi.org/10.1007/s10958-014-1829-8
Bibliographic databases:
Document Type: Article
UDC: 621.39.1+519.34
Language: Russian
Citation: I. D. Zaslavsky, “Extended fuzzy constructive logic”, Studies in constructive mathematics and mathematical logic. Part XII, Zap. Nauchn. Sem. POMI, 407, POMI, St. Petersburg, 2012, 35–76; J. Math. Sci. (N. Y.), 199:1 (2014), 16–35
Citation in format AMSBIB
\Bibitem{Zas12}
\by I.~D.~Zaslavsky
\paper Extended fuzzy constructive logic
\inbook Studies in constructive mathematics and mathematical logic. Part~XII
\serial Zap. Nauchn. Sem. POMI
\yr 2012
\vol 407
\pages 35--76
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl5485}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3032183}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2014
\vol 199
\issue 1
\pages 16--35
\crossref{https://doi.org/10.1007/s10958-014-1829-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84902280578}
Linking options:
  • https://www.mathnet.ru/eng/znsl5485
  • https://www.mathnet.ru/eng/znsl/v407/p35
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:220
    Full-text PDF :85
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024