Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 164, Pages 3–9 (Mi znsl5468)  

Scaling function for the velocity correlator in the theory of isotropic developed turbulence

N. V. Antonov
Abstract: The scaling function is calculated in the framework of the renormalization group approach to the theory of developed turbulence for the velocity correlator to the second order in the $\varepsilon$-expansion.
Bibliographic databases:
Document Type: Article
UDC: 517.957
Language: Russian
Citation: N. V. Antonov, “Scaling function for the velocity correlator in the theory of isotropic developed turbulence”, Differential geometry, Lie groups and mechanics. Part IX, Zap. Nauchn. Sem. LOMI, 164, "Nauka", Leningrad. Otdel., Leningrad, 1987, 3–9
Citation in format AMSBIB
\Bibitem{Ant87}
\by N.~V.~Antonov
\paper Scaling function for the velocity correlator in the theory of isotropic developed turbulence
\inbook Differential geometry, Lie groups and mechanics. Part~IX
\serial Zap. Nauchn. Sem. LOMI
\yr 1987
\vol 164
\pages 3--9
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5468}
\zmath{https://zbmath.org/?q=an:0850.76243}
Linking options:
  • https://www.mathnet.ru/eng/znsl5468
  • https://www.mathnet.ru/eng/znsl/v164/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:99
    Full-text PDF :39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024