Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 163, Pages 166–185 (Mi znsl5467)  

Eikonal approximation for fast-decreasing potentials. I

D. R. Yafaev
Abstract: The Schrodinger equation with a potential $gq(x)$, decreasing quicker than any power of $|x|^{-1}$ at infinity, is considered at an energy $k^2$. The full asymptotic expansion of its wave function is constructed for $k\to\infty$, $g\leq Ck^{2-\gamma}$, $\gamma>0$. This expansion is used to derive the asymptotics of the forward scattering amplitude and of the total scattering cross-section.
Bibliographic databases:
Document Type: Article
UDC: 539.101
Language: Russian
Citation: D. R. Yafaev, “Eikonal approximation for fast-decreasing potentials. I”, Boundary-value problems of mathematical physics and related problems of function theory. Part 19, Zap. Nauchn. Sem. LOMI, 163, "Nauka", Leningrad. Otdel., Leningrad, 1987, 166–185
Citation in format AMSBIB
\Bibitem{Yaf87}
\by D.~R.~Yafaev
\paper Eikonal approximation for fast-decreasing potentials.~I
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~19
\serial Zap. Nauchn. Sem. LOMI
\yr 1987
\vol 163
\pages 166--185
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5467}
\zmath{https://zbmath.org/?q=an:0695.35052}
Linking options:
  • https://www.mathnet.ru/eng/znsl5467
  • https://www.mathnet.ru/eng/znsl/v163/p166
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:128
    Full-text PDF :49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024