Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 163, Pages 154–165 (Mi znsl5466)  

On subsets of Hilbert space having finite Hausdorff dimension

B. I. Shubov
Abstract: Let $X_1$, $X_2$ be Hilbert spaces, $X_2\subset X_1$, $X_2$ is dense in $X_1$, the imbedding is compact, $M\subset X_2$, $\dim_H^{(i)}M$ and $h^{(i)}(M)$ are Hausdorff dimension and limit capacity (information dimension) of the set $M$ with respect to the metric of the space $X_i(i=1,2)$. Two examples are constructed. 1) An example of the set $M$ which is bounded in $X_2$ and such that a) $h^{(1)}(M)<\infty$ (and therefore $\dim_H^{(1)}M<\infty$) b) $M$ cannot be covered by a countable union of compact subsets of $X_2$ (and therefore $\dim_H^{(2)}M=\infty$)). 2) An example of the set $M$ which is compact in $X_2$ and such that $h^{(1)}(M)<\infty$ and $h^{(2)}(M)=\infty$.
Bibliographic databases:
Document Type: Article
UDC: 513.882
Language: Russian
Citation: B. I. Shubov, “On subsets of Hilbert space having finite Hausdorff dimension”, Boundary-value problems of mathematical physics and related problems of function theory. Part 19, Zap. Nauchn. Sem. LOMI, 163, "Nauka", Leningrad. Otdel., Leningrad, 1987, 154–165
Citation in format AMSBIB
\Bibitem{Shu87}
\by B.~I.~Shubov
\paper On subsets of Hilbert space having finite Hausdorff dimension
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~19
\serial Zap. Nauchn. Sem. LOMI
\yr 1987
\vol 163
\pages 154--165
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5466}
\zmath{https://zbmath.org/?q=an:0652.46016}
Linking options:
  • https://www.mathnet.ru/eng/znsl5466
  • https://www.mathnet.ru/eng/znsl/v163/p154
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:117
    Full-text PDF :40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024