|
Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 163, Pages 76–104
(Mi znsl5459)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
The Cauchy problem for a semilinear wave equation. I
L. V. Kapitanski
Abstract:
In this paper the Cauehy problem for the semilinear wave
equation on the torus $\mathbb{T}^n$, $n\geq3$:
\begin{equation}
\ddot{u}-\triangle u+f(u)=h,\qquad u|_{t=0}=\varphi,\qquad \dot{u}|_{t=0}=\varphi.
\tag{1}
\end{equation}
is studied. It is supposed that the function $f:\mathbb{R}^1\longrightarrow\mathbb{R}^1$
continuous and there exist non negative constants $A_1$, $A_2$, $A_3$
and $a\geq1$ such that
$$
A_1+A_2s^2+\int^s_0f(\theta)d\theta\geq0,\qquad\forall s\in\mathbb{R}^1,
$$
$$
|f(s_1)-f(s_2)|\leq A_3(1+|s_1|^{a-1}+|s_2|^{a-1})|s_1-s_2|,\qquad\forall s_1,s_2\in\mathbb{R}^1.
$$
The main result of the present paper is the theorem: if
$1\leq a<(n+2)/(n-2)$, then for arbitrary data $\varphi\in W_2^1(\mathbb{T}^n)$, $\psi\in L_2(\mathbb{T}^n)$, $h\in L_{1,\operatorname{loc}}(\mathbb{R}^1\to L_2(\mathbb{T}^n))$ the problem
(I) has the global in time solution $u$ with the following properties:
$u\in C_{\operatorname{loc}}(\mathbb{R}^1\to W_2^1(\mathbb{T}^n))$, $\dot{u}\in C_{\operatorname{loc}}(\mathbb{R}^1\to L_2(\mathbb{T}^n))$
and $u\in L_{q,\operatorname{loc}}(\mathbb{R}^1\to L_p(\mathbb{T}^n))$ for all $p$, $q$, satisfying
$$
\frac{n-3}{2n}<\frac1p<\frac{n-2}{2n},\qquad\frac1q=\frac{n-2}{2}-\frac np,
$$
and such a solution is unique.
Citation:
L. V. Kapitanski, “The Cauchy problem for a semilinear wave equation. I”, Boundary-value problems of mathematical physics and related problems of function theory. Part 19, Zap. Nauchn. Sem. LOMI, 163, "Nauka", Leningrad. Otdel., Leningrad, 1987, 76–104
Linking options:
https://www.mathnet.ru/eng/znsl5459 https://www.mathnet.ru/eng/znsl/v163/p76
|
Statistics & downloads: |
Abstract page: | 204 | Full-text PDF : | 88 |
|