Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 163, Pages 76–104 (Mi znsl5459)  

This article is cited in 1 scientific paper (total in 1 paper)

The Cauchy problem for a semilinear wave equation. I

L. V. Kapitanski
Abstract: In this paper the Cauehy problem for the semilinear wave equation on the torus $\mathbb{T}^n$, $n\geq3$:
\begin{equation} \ddot{u}-\triangle u+f(u)=h,\qquad u|_{t=0}=\varphi,\qquad \dot{u}|_{t=0}=\varphi. \tag{1} \end{equation}
is studied. It is supposed that the function $f:\mathbb{R}^1\longrightarrow\mathbb{R}^1$ continuous and there exist non negative constants $A_1$, $A_2$, $A_3$ and $a\geq1$ such that
$$ A_1+A_2s^2+\int^s_0f(\theta)d\theta\geq0,\qquad\forall s\in\mathbb{R}^1, $$

$$ |f(s_1)-f(s_2)|\leq A_3(1+|s_1|^{a-1}+|s_2|^{a-1})|s_1-s_2|,\qquad\forall s_1,s_2\in\mathbb{R}^1. $$
The main result of the present paper is the theorem: if $1\leq a<(n+2)/(n-2)$, then for arbitrary data $\varphi\in W_2^1(\mathbb{T}^n)$, $\psi\in L_2(\mathbb{T}^n)$, $h\in L_{1,\operatorname{loc}}(\mathbb{R}^1\to L_2(\mathbb{T}^n))$ the problem (I) has the global in time solution $u$ with the following properties: $u\in C_{\operatorname{loc}}(\mathbb{R}^1\to W_2^1(\mathbb{T}^n))$, $\dot{u}\in C_{\operatorname{loc}}(\mathbb{R}^1\to L_2(\mathbb{T}^n))$ and $u\in L_{q,\operatorname{loc}}(\mathbb{R}^1\to L_p(\mathbb{T}^n))$ for all $p$, $q$, satisfying
$$ \frac{n-3}{2n}<\frac1p<\frac{n-2}{2n},\qquad\frac1q=\frac{n-2}{2}-\frac np, $$
and such a solution is unique.
Bibliographic databases:
Document Type: Article
UDC: 517.957
Language: Russian
Citation: L. V. Kapitanski, “The Cauchy problem for a semilinear wave equation. I”, Boundary-value problems of mathematical physics and related problems of function theory. Part 19, Zap. Nauchn. Sem. LOMI, 163, "Nauka", Leningrad. Otdel., Leningrad, 1987, 76–104
Citation in format AMSBIB
\Bibitem{Kap87}
\by L.~V.~Kapitanski
\paper The Cauchy problem for a semilinear wave equation.~I
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~19
\serial Zap. Nauchn. Sem. LOMI
\yr 1987
\vol 163
\pages 76--104
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5459}
\zmath{https://zbmath.org/?q=an:0697.35091}
Linking options:
  • https://www.mathnet.ru/eng/znsl5459
  • https://www.mathnet.ru/eng/znsl/v163/p76
    Cycle of papers
    This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:204
    Full-text PDF :88
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024