Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 160, Pages 272–285 (Mi znsl5445)  

This article is cited in 1 scientific paper (total in 1 paper)

Direct decompositions of finite rank torsion-free Abelian groups

A. V. Yakovlev
Full-text PDF (621 kB) Citations (1)
Abstract: It is proved that if $r_1,r_2,\dots,r_s$; $l_1,l_2,\dots,l_t$ are the ranks of the indecomposable summands of two direct decompositions of a torsion-free Abelian group of finite rank and if $s_0$ is the number of units among the numbers $r_i$, while $t_0$ is the number of units among the numbers $l_j$, then $r_i\leq n-t_0$, $l_j\leq n-s_0$ for all $i$, $j$. Moreover, if for some i we have $i$ $r_i=n-t_0$, then among the $l_j$ only one term is different from 1 and it is equal to $n-t_0$; similarly if $l_j=n-s_0$ for some $j$. In addition, a construction is presented, allowing to form, from several indecomposable groups, a new group, called a flower group, and it is proved that a flower group is indecomposable under natural restrictions on its defining parameters.
Bibliographic databases:
Document Type: Article
UDC: 512.4
Language: Russian
Citation: A. V. Yakovlev, “Direct decompositions of finite rank torsion-free Abelian groups”, Analytical theory of numbers and theory of functions. Part 8, Zap. Nauchn. Sem. LOMI, 160, "Nauka", Leningrad. Otdel., Leningrad, 1987, 272–285
Citation in format AMSBIB
\Bibitem{Yak87}
\by A.~V.~Yakovlev
\paper Direct decompositions of finite rank torsion-free Abelian groups
\inbook Analytical theory of numbers and theory of functions. Part~8
\serial Zap. Nauchn. Sem. LOMI
\yr 1987
\vol 160
\pages 272--285
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5445}
\zmath{https://zbmath.org/?q=an:0900.20100|0631.20045}
Linking options:
  • https://www.mathnet.ru/eng/znsl5445
  • https://www.mathnet.ru/eng/znsl/v160/p272
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:102
    Full-text PDF :43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024