|
Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 160, Page 262
(Mi znsl5443)
|
|
|
|
Modules for quadratic extensions of Dedekind rings
D. K. Faddeev
Abstract:
Let $\sigma$ be a Dedekind ring, let $Q$ be a maximal order in a quadratic extension $K$ of the field $k$ of quotients of the ring $\sigma$, let $\Lambda$ be a subring of the ring $\sigma$, containing $\sigma$ and such that $\Lambda k=K$. It is proved that $\sigma/\Lambda$is a cyclic $\Lambda$-module. From here there follows, in particular, that each finitely generated torsion-free $\Lambda$-module is a direct sum of modules which are isomorphic to the ideals of ring $\Lambda$.
Citation:
D. K. Faddeev, “Modules for quadratic extensions of Dedekind rings”, Analytical theory of numbers and theory of functions. Part 8, Zap. Nauchn. Sem. LOMI, 160, "Nauka", Leningrad. Otdel., Leningrad, 1987, 262
Linking options:
https://www.mathnet.ru/eng/znsl5443 https://www.mathnet.ru/eng/znsl/v160/p262
|
Statistics & downloads: |
Abstract page: | 120 | Full-text PDF : | 43 |
|