Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 160, Page 262 (Mi znsl5443)  

Modules for quadratic extensions of Dedekind rings

D. K. Faddeev
Abstract: Let $\sigma$ be a Dedekind ring, let $Q$ be a maximal order in a quadratic extension $K$ of the field $k$ of quotients of the ring $\sigma$, let $\Lambda$ be a subring of the ring $\sigma$, containing $\sigma$ and such that $\Lambda k=K$. It is proved that $\sigma/\Lambda$is a cyclic $\Lambda$-module. From here there follows, in particular, that each finitely generated torsion-free $\Lambda$-module is a direct sum of modules which are isomorphic to the ideals of ring $\Lambda$.
Bibliographic databases:
Document Type: Article
UDC: 519.48
Language: Russian
Citation: D. K. Faddeev, “Modules for quadratic extensions of Dedekind rings”, Analytical theory of numbers and theory of functions. Part 8, Zap. Nauchn. Sem. LOMI, 160, "Nauka", Leningrad. Otdel., Leningrad, 1987, 262
Citation in format AMSBIB
\Bibitem{Fad87}
\by D.~K.~Faddeev
\paper Modules for quadratic extensions of Dedekind rings
\inbook Analytical theory of numbers and theory of functions. Part~8
\serial Zap. Nauchn. Sem. LOMI
\yr 1987
\vol 160
\pages 262
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5443}
\zmath{https://zbmath.org/?q=an:0642.13004}
Linking options:
  • https://www.mathnet.ru/eng/znsl5443
  • https://www.mathnet.ru/eng/znsl/v160/p262
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:120
    Full-text PDF :43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024