|
Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 160, Pages 222–228
(Mi znsl5438)
|
|
|
|
Homological stabilization for the symplectic and orthogonal groups
I. A. Panin
Abstract:
It is proved that for a commutative ring $R$ with identity and without finite residue $R$, fields, the integral groups of homologies $Hp(sp_{2n}(R))$ and $Hp(O_{2n}(R))$ for a fixed $p$ do not vary with the growth of $n$ only if $n\geq2p+\dim X$. Here $\dim X$ is the Krull $\dim X$-dimension of the spectrum of the maximal ideals of the ring $R$.
Citation:
I. A. Panin, “Homological stabilization for the symplectic and orthogonal groups”, Analytical theory of numbers and theory of functions. Part 8, Zap. Nauchn. Sem. LOMI, 160, "Nauka", Leningrad. Otdel., Leningrad, 1987, 222–228
Linking options:
https://www.mathnet.ru/eng/znsl5438 https://www.mathnet.ru/eng/znsl/v160/p222
|
Statistics & downloads: |
Abstract page: | 155 | Full-text PDF : | 47 |
|