Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 160, Pages 72–81 (Mi znsl5424)  

This article is cited in 1 scientific paper (total in 1 paper)

On the period length of the continued fraction expansion of a quadratic irrational and the class number of real quadratic fields

E. P. Golubeva
Full-text PDF (465 kB) Citations (1)
Abstract: The fundamental result of the paper is the following theorem: suppose that the Riemann conjecture is valid for the Dedekind $\xi$-functions of all fields $\mathbb{Q}\Bigl(\Bigl(\frac{1+\sqrt{5}}{2}\Bigr)^{1/k},1^{1/k}\Bigr)$ Then there exists a constant $C>0$ such that on the interval $p\leq x$ one can find at least $Cx\log^{-1}x$ prime numbers $p$ for which $h(Sp^2)=2$. Here $h(d)$ is the number of proper equivalence classes of primitive binary quadratic forms of discriminant $d$. In addition, it is proved that
$$ \sum_{p\leq x}h(Sp^2)\log p=O(x^{3/2}). $$
For these sequence of discriminants of a special form with increasing square-free part, one has obtained a nontrivial estimate from above for the number of classes.
Bibliographic databases:
Document Type: Article
UDC: 511.622
Language: Russian
Citation: E. P. Golubeva, “On the period length of the continued fraction expansion of a quadratic irrational and the class number of real quadratic fields”, Analytical theory of numbers and theory of functions. Part 8, Zap. Nauchn. Sem. LOMI, 160, "Nauka", Leningrad. Otdel., Leningrad, 1987, 72–81
Citation in format AMSBIB
\Bibitem{Gol87}
\by E.~P.~Golubeva
\paper On the period length of the continued fraction expansion of a quadratic irrational and the class number of real quadratic fields
\inbook Analytical theory of numbers and theory of functions. Part~8
\serial Zap. Nauchn. Sem. LOMI
\yr 1987
\vol 160
\pages 72--81
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5424}
\zmath{https://zbmath.org/?q=an:0900.11015|0633.10022}
Linking options:
  • https://www.mathnet.ru/eng/znsl5424
  • https://www.mathnet.ru/eng/znsl/v160/p72
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:193
    Full-text PDF :86
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024