Zapiski Nauchnykh Seminarov LOMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 160, Pages 54–71 (Mi znsl5423)  

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotic distribution of integral points on the three-dimensional sphere

E. P. Golubeva, O. M. Fomenko
Full-text PDF (575 kB) Citations (1)
Abstract: Let $Q(X)=x_1^2+x_2^2+x_3^2$, $X=(x_1,x_2,x_3)$; $r(n)$ be the number of integral solutions of the equation
\begin{equation} Q(X)=n. \tag{1} \end{equation}
The following theorem is proved: $n=1,2,3,5,6\, (\operatorname{mod}8)$ and let $r(n,\Omega)$ be the number of integral solutions of equation (1) such that $Y=X/\sqrt{n}\in\Omega$ where $\Omega$ is an arbitrary convex domain with a piecewise smooth boundary on the unit sphere $S$: $Q(Y)=1$. Then
$$ r(n,\Omega)=\mu(\Omega)r(n)+O(n^{1/2-1/336+\varepsilon}),\qquad n\to\infty, $$
where $\mu(\Omega)$ is a measure, normalized by the condition $\mu(S)=1$. A similar result is obtained for the three-dimensional ellipsoid of general form. The mentioned theorem, in combination with the classical Guass–Siegel results on $r(n)$, yields the uniform distribution of the integral points on the three-dimensional sphere (1).
Bibliographic databases:
Document Type: Article
UDC: 511.466 + 517.863
Language: Russian
Citation: E. P. Golubeva, O. M. Fomenko, “Asymptotic distribution of integral points on the three-dimensional sphere”, Analytical theory of numbers and theory of functions. Part 8, Zap. Nauchn. Sem. LOMI, 160, "Nauka", Leningrad. Otdel., Leningrad, 1987, 54–71
Citation in format AMSBIB
\Bibitem{GolFom87}
\by E.~P.~Golubeva, O.~M.~Fomenko
\paper Asymptotic distribution of integral points on the three-dimensional sphere
\inbook Analytical theory of numbers and theory of functions. Part~8
\serial Zap. Nauchn. Sem. LOMI
\yr 1987
\vol 160
\pages 54--71
\publ "Nauka", Leningrad. Otdel.
\publaddr Leningrad
\mathnet{http://mi.mathnet.ru/znsl5423}
\zmath{https://zbmath.org/?q=an:0900.11047|0634.10043}
Linking options:
  • https://www.mathnet.ru/eng/znsl5423
  • https://www.mathnet.ru/eng/znsl/v160/p54
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:184
    Full-text PDF :77
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024