|
Zapiski Nauchnykh Seminarov LOMI, 1987, Volume 160, Pages 41–53
(Mi znsl5422)
|
|
|
|
A finiteness criterion for the number of rational points for twisted elliptic Weil curves
P. I. Guerzhoy, A. A. Panchishkin
Abstract:
We consider the Weil elliptic curve $E/\mathbb{Q}$ and let $L(E,s)=\sum^\infty_{n=1}a(n)n^{-s}$ be its canonical $L$-series. Admitting the Birch–Swinnerton–Dyer conjecture and fixing the curve $E$, a criterion is given for the finiteness of the group $E_D(\mathbb{Q})$ for twisted elliptic curves $E_D$, defined by the condition
$$
L(E_D,s)=\sum^\infty_{n=1}\chi(n)a(n)n^{-s},
$$
where $D$ is the discriminant of the quadratic field and $\chi(D)$ is its quadratic character.
Citation:
P. I. Guerzhoy, A. A. Panchishkin, “A finiteness criterion for the number of rational points for twisted elliptic Weil curves”, Analytical theory of numbers and theory of functions. Part 8, Zap. Nauchn. Sem. LOMI, 160, "Nauka", Leningrad. Otdel., Leningrad, 1987, 41–53
Linking options:
https://www.mathnet.ru/eng/znsl5422 https://www.mathnet.ru/eng/znsl/v160/p41
|
Statistics & downloads: |
Abstract page: | 105 | Full-text PDF : | 35 |
|